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RIGID LOCAL SYSTEMS ON A! WITH FINITE MONODROMY

NICHOLAS M. KATZ

WITH AN APPENDIX BY PHAM HUU TIEP

Abstract. 'We formulate some conjectures about the precise determination of the
monodromy groups of certain rigid local systems on A' whose monodromy groups
are known, by results of Kubert, to be finite. We prove some of them.
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§1. Introduction. The solution [27] of Abhyankar’s conjecture for the affine
line in finite characteristic p tells us that any finite group which is generated
by its Sylow p-subgroups occurs as a quotient of the geometric fundamental
group. In a series of papers, Abhyankar has written down explicit equations
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786 N. M. KATZ

which realize many finite groups of Lie type as such quotients. Here our concern
is with certain local systems which arise as very simple one-parameter families
of exponential sums.

Namely, we start with a finite field IF; of characteristic p, a prime number

¢ # p, a non-trivial Qg-valued additive character ¥ of Fy, and a @X -valued
multiplicative character x of Fj (with the convention that for x the trivial
character 1, 1(0) = 1, otherwise x(0) = 0), and an integer D > 3. Then we
form the local system F(IF,, ¥, x, D) on Al /F, whose trace function (at [F-
valued points ¢ € F, = Al (IFy)) is given by

te =) x@Y P + ),

xelF,

with an analogous formula for the trace at k-valued points ¢ € k, for k /I, a finite
extension.

As we recall in Theorem 3.1, these local systems have long been known
to have huge geometric monodromy groups when the characteristic p is large
compared to D. In our earlier work, we had also encountered some situations
where p was small compared to D and where we showed that the geometric
monodromy group was a finite group. Here are some of them:

(1) FF2, ¢, 1,3);

2) F(F2 ¢, 1,5);

(3) F(l3 ¢, 1,4);

4 FlFs ¢, 1,5);

(5) F(Fs, ¢, 1,3);

©) F@Fs3, ¥, x2.9), Ggeom = As;

(M FF13, ¥, x2, 7), Ggeom = PSL(3, 13);
®)  F(IF3, ¥, x2,7), Ggeom = SU(3, 3).

Theorems of Kubert [23] from May, 1986 gave whole families of local
systems F(F,, ¥, x, D) with finite geometric monodromy groups. The
numerology of some of the Kubert families matches the numerology of the
representation theory of the groups SL(2, ¢) for ¢ > 5 a power of an odd prime
p. The numerology of other Kubert families matches the numerology of the
representation theory of the groups SU(n, g) for n > 3 odd and g any power
of p (with the proviso that ¢ > 3 if n = 3). In §9, we formulate the natural
conjectures which arise from this agreement of numerology.

We were led to formulate these conjectures when we realized, only recently,
that all of the eight examples of finite geometric monodromy listed above fit
into the framework of Kubert’s theorems. One of his results (Theorem 4.1) was
that for g any power of p, F(F,, ¥, 1, g + 1) has finite geometric monodomy,
which Pink [26] the next week (!) showed to be a p-group; see Appendix A
for Pink’s proof. Sawin has recently shown that when ¢ is odd, this group is in
fact a Heisenberg group of order pg? and exponent p. See the second appendix
for Sawin’s proof. This explains examples (1) through (4) above. Item (5) results
from the Kubert theorem (Theorem 4.2(1)) that 7 (Fy, ¥, 1, (g +1)/2) has finite
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RIGID LOCAL SYSTEMS ON A! WITH FINITE MONODROMY 787

geometric monodromy, which we conjecture to be the image of SL(2, ¢) in one
of its irreducible representations of dimension (g —1)/2, so long as ¢ > 5 is odd.
Items (6) and (7) result from the Kubert theorem (Theorem 4.2(2)) that F (I,
¥, x2, (¢ + 1)/2) has finite geometric monodromy, which we conjecture always
to be the image of SL(2, ¢) in one of its irreducible representations of dimension
(g +1)/2, s0 long as g = 5 is odd. Item (6) falls under this rubric with g = 9
if we remember that As is also PSL(2, 5). Item (7) is the case ¢ = p = 13. The
final case results from yet another Kubert result (Theorem 4.3(2)), that forn > 3
odd, F(Fy, ¥, x2, (¢" +1)/(q + 1)) has finite geometric monodromy, which we
conjecture to be the image of SU(n, ¢) in its unique orthogonal representation of
dimension (¢" + 1)/(g + 1), so long as ¢ > 3 is odd. Item (8) confirms this to
be the case forn = g = 3.

We prove these conjectures in the case of SL(2, p) using classical group
theory results of Brauer [2, 3], Feit [7] and Tuan [28]. We then treat all cases
of the conjectures for SL(2, ¢) and many (but not all) for SU(3, ¢g) by using
the beautiful work of Gross [10] and the ideas underlying that work, which
Gross generously explained to us. We identify the local systems in question
as Kummer pullbacks of local systems on G, /Fg, respectively on Gy, /F 2,
which are themselves pushouts of G-torsors when G is PSL(2, g), respectively
PU(3, g). These G-torsors are themselves certain Deligne—Lusztig curves, which
Gross explains how to view as G-torsors for G either PSL(2, ¢) or PU(3, g).

It is a pleasure to acknowledge Dick Gross’s essential contribution to
this work. It is a pleasure to thank Ron Evans, for providing the proofs of
Theorems 16.3 and 19.4, Richard Pink for providing, in 1986, the proof of
Theorem 20.1 and its corollaries, and Will Sawin for providing the proof of
Theorem 21.1. We also thank the referee, who showed how to simplify and unite
the proofs of Theorems 16.2 and 16.3.

In a first version of this paper, the SU(3, ¢g) discussion required g to be odd,
because it used explicit facts about the representation theory of finite Heisenberg
groups, which for ¢ odd occur as certain unipotent radicals. Pham Huu Tiep
explained that in the ¢ even case, the representation theory of these unipotent
radicals was no different, and kindly added an appendix showing this.

§2. The local systems. Fix a prime p, a finite field F; of characteristic p, and
a non-trivial additive character

(/2 (Fq’ +) — ﬂp(Z[Cp])-

Denote by x a non-trivial multiplicative character

X :F; - Mq—l(Z[fq—l])~
We extend x to a function on all of [F; by defining x (0) = 0.

We choose a prime number £ # p, and an embedding of Q, say viewed as
the algebraic closure of Q in C, into an algebraic closure QQ; of Q. This allows
us to speak of the lisse, rank one Q; Artin—Schreier sheaf Ly on Al /Fy and
of the lisse, rank one Q; Kummer sheaf Ly on G,,/F,. For j : G,, C Al the
inclusion, the extension by zero ji.L, on Al will also be denoted L, when no
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788 N. M. KATZ

ambiguity can result. We denote by 1 the trivial multiplicative character, and
adopt the convention that £q is the constant sheaf Q, on A'. We write FT for
FT\, the Fourier transform using Ly (xy) as the kernel.

Given an integer D > 2 which is prime to p, we denote by

FEy, ¢, 1, D) = FT(L‘,.‘/,(XD)),
and, for each non-trivial ¥,
F(Fq’ wa X D) = FT(EX(X) ® L"w(xn))

These Fourier transform sheaves are lisse on A' /Fg4, pure of weight one, and
geometrically irreducible, cf. [4, 19, 24]. They are cohomologically rigid, being
the Fourier transforms of rank one objects, cf. [18, 3.0.2]. Their ranks are

rank(F(Fy, ¥, 1, D)) =D — 1,
rank(F(Fy, ¥, x, D)) = D for x # 1.

Their trace functions are given as follows, cf. [11]. For k/IF; a finite extension,
define
Vi, = Y o Tracex/r,,  xk/F, = X o Normyp, .
Then for ¢t € k, we have

Trace(Frob, | F (Fy. . 1. D)) = = > Yk, (x” + tx),
xek
Trace(Froby | F(Fg. ¥, x. D)) = — > . xi/m, () ¥/, (& + 1x).

xek>*

When D is odd, F(IF,, ¥, 1, D) is symplectically self-dual toward Qe(=1).
When D is even, F(F,, ¥, 1, D) has no autoduality.

When D is odd, p is odd, and x is the quadratic character x5, then F (I, ¥,
X2, D) is orthogonally self-dual toward Q¢(—=1). No other F (Fy, ¥, x, D) with
non-trivial x is autodual.

Given a lisse Qg-sheaf F on A!/ IF, of rank r, we choose a geometric point 77
of Al and view F as a representation of the fundamental group

n?rith(Al/Fq, n) = n](Al/Fq’ m,
OF n?rlth(Al/Fq, ) — GL(]:ﬁ) = GL(r, @)

The Zariski closure of the image of nfrith is the arithmetic monodromy group

G arith, 7 of F. The Zariski closure of the image of its normal subgroup
N ARy, ) =i (A, 1)
is the geometric monodromy group Ggeom, 7 of F.

For F alisse Qg-sheaf on A!/ [F, of rank r which is geometrically irreducible,
if p > 2r 4 1, then F is Lie-irreducible, i.e., the identity component Ggeom of
Ggeom acts irreducibly, cf. [15, Proposition 5], based on [8]. Below we will be
interested in situations where p < 2r + 1.

Geometrically, i.e., on Al /Fy, the (restrictions to G, of the) local systems
FFy, ¢, 1, D) and F(F,, ¥, x, D) are Kummer pullbacks, by the Dth
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RIGID LOCAL SYSTEMS ON A! WITH FINITE MONODROMY 789

power map, of certain Kloosterman, respectively hypergeometric, sheaves,
cf. [17,9.2.3 and 9.2.2]. The precise statement is this.

THEOREM 2.1. We have the following results.

(1) Denote by py, ..., pp—1 all but one of the multiplicative characters of
order dividing D (of a suitably large extension of F,, say F,[upl).
Then F(Fy, v, 1, D)|Gy, is geometrically isomorphic to a multiplicative
translate of

[DTKIC, ¥5 p1, ..., pp—1) = [DI*"H, ¥ o1, ..., pD=15 D).

(2) Denote by py, ..., pp all the multiplicative characters of order dividing D
(of a suitably large extension of Fy, say Fy[up]l). Choose a multiplicative
character A (of a suitably large extension of IF) such that

AP =7%.

Then F(Fy, v, x, D)|G,, is geometrically isomorphic to a multiplicative
translate of

[DT*H, ¥; p1, ..., pp; A).

COROLLARY 2.2. We have the following results.

(1) For D > 3, the determinants det(F(Fy, ¥, 1, D)) and det(F(Fy, ¥,
X, D)) are everywhere tame, hence geometrically constant on A /Fq.

(2) The I representation of F(Fy, ¥, 1, D) is totally wild, with all slopes
D/(D —1). The I representation of F (Fy, ¥, x, D) is the direct sum of
a totally wild summand of rank D — 1 with all slopes D/(D — 1) and a
rank one summand which is the restriction to I of the Kummer sheaf L, .

(3) Forj: Al ¢ P! the inclusion, we have

j'f(]qu wv]]-’D);j*‘FUFc]7 wvﬂwD)’
J'F(Fq’ Ip9 XaD)gJ*F(]Fq’ W» XaD)

(4)  For F either F(Fy, ¥, 1, D) or F(Fy, ¥, x, D), and i # 1, we have
HU(A'/Fy, F) = H'(P'/F, juF) =0.
(5) We have
HY(A'/Fy, F(Fy, ¥. 1, D)) =H'(P'/Fy, ju F(Fy. . 1, D)) =Qu(—1).
(6) For x non-trivial, we have
H!(A'/Fy, F(Fy, ¥, x, D) = H' (B /Fy, juFFy, ¥, x, D)) =0.
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790 N. M. KATZ

Proof. Assertion (1) results from the corresponding fact for the hypergeo-
metric sheaves in question. They are tame at 0, and at oo all their non-zero oo
slopes are 1/(D — 1) < 1 (because D > 3), so their determinants are tame
at both 0 and oco. The pullbacks of their determinants by [D] are lisse on A!
and tame at 0o, so geometrically constant. Assertion (2) results by pullback
from the corresponding facts about hypergeometric sheaves. Assertion (3) is
then immediate from (2), according to which both F(Fy, v, 1, D) and F(F,, ¥,
X, D) are totally ramified at co. Assertion (4) results from (3) and the fact that
the F's in question are geometrically irreducible of rank > 2. Assertions (5) and
(6) result from Fourier inversion. J

We have the following more precise information about determinants.

THEOREM 2.3. For D > 3, both F (Fy, ¥, 1, D) and F(Fy, ¥, x, D) have
geometrically trivial determinants, so of the form a%°€ for some scalar a(lfy, ¥,

x,D) € @X. The scalar a(lFy, ¥, x, D) is given as follows, where for m € F,
we write Yy, for the additive character x +— ¥ (mx).

(1) If D = 2d is even, then for F (F,, ¥, 1, 2d) we have

a(Fy, ¥, 1, D) = (—g(¥a, x2))q" "

(2) If D = 2d is even, then for F (IFy, ¥, x, 2d) with x non-trivial we have

aFy, ¥, x, D) = (—g(W—p, X)) (—gWa, x2))q* .

(3) If D =2d + lis odd, then for F (Fy, ¥, 1, 2d + 1) we have
a(Fy, v, 1,2d +1) = ¢°.

@) If D=2d+ 1isodd, then for f(IFq, v, x,2d + 1) with x non-trivial we
have

a(Fy, ¥, x,2d + 1) = (—g(Wp, x))q .

Proof. As shown in Corollary 2.2 part (1), the determinants in question are
geometrically trivial, so each is of the form o9 for some scalar o € @X. This
scalar is then the common value of det(Frob]Fq,tU: ) at points ¢t € F,. Taking
t = 0, the scalar is

det(Frobg, | H} (A' /Fq, L) ® Lyye0))),

for x either 1 or non-trivial.

Here is a simple trick which “unites” these cases. When yx is the trivial
character 1, replace it by ji of itself; in other words, consider instead the
cohomology group H! (G /Fy, Lyx) ® Ly xpy). When x is non-trivial, this
is the same group as before; when y = 1, the cohomology group grows in
dimension by one, adding an eigenvalue 1. So in both cases the determinant
does not change.
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RIGID LOCAL SYSTEMS ON A! WITH FINITE MONODROMY 791

To compute the determinant, we use the Hasse—Davenport method, cf. [15,
p- 53] and [20, 2.2-2.3]. In terms of the elementary symmetric functions S;, the
Newton symmetric functions N; are Z-polynomials in the S;. Then

det(—Frobg, |H! (G /Fq, L) ® Ly 0)))
= Y xSp)¥(Np(Si.....5p)).
S],...,SDGFq,SD#O

The polynomial Np(Sy, ..., Sp) is of the form

D—1
Np = (=D)PT'DSp + (=P Y iS;Sp_i + R,

i=1

where R is a polynomial in the S; which is isobaric of degree D and in which
every monomial has usual degree at least 3.
[To see this, begin with the identity

log(1/(1 = $iT + T2 +--) = Y NiT'/i,

izl

apply Td/dT to get

Yz (CDTHST! =Y NT'
1= 81T +ST2+--- o

i>1

and expand the denominator by the geometric series.]
When D = 2d 4+ 1 is odd, this expression is of the form

d
Np=DSp—-D ZSiSZdJrlfi +R.
i=1

When D = 2d is even, it is of the form

d—1
Np=-DSp+dS;j+D> SiSu-i+R.

i=1

Exactly as in [20, 2.2-2.3], using this expression for Np we see that when D =
2d + 1 is odd, then det(—Frob) is equal to

g(Wp, x)q%,

and that when D = 2d is even, then det(—Frob) is equal to

gW_p, x)gWa, x2)q?~".
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792 N. M. KATZ

Thus when D = 2d + 1 is odd, det(Frob) is given by

—g(Wp, x)q",

and when D = 2d, det(Frob) is given by

(—g(W—p, X)) (=g Wa, x2))g? .

With our ji convention, —g(¥p, 1) = 1. J

Remark 2.4. The attentive reader may be disturbed by the presence of the
quadratic Gauss sum in the statements of parts (1) and (2) of the previous
theorem, as they make no sense in characteristic 2. But these cases concern D
even, which is not allowed in characteristic 2.

§3. Review of the situation in large characteristic. Suppose we fix an integer
D > 3. In large (compared to D) characteristic p, the local systems F (I, v,
X, D) have very large geometric monodromy groups Gamn. Here is a precise
statement.

THEOREM 3.1. Fix D > 3. We have the following results.

(1) Ifp > 2D — 1, then for any finite field I, of characteristic p and any non-
trivial additive character  of ¥y, the local system F(Fy, ¥, 1, D) has
Gegeom = Sp(D — 1, Q) if D is odd, and it has G geom = SL(D — 1, Q) if
D is even.

(2) There is an explicit integer M (D) (the integer 2DN1(D — 1)No(D — 1)
in [17, 7.1.1]) such that if p > M(D), then for any finite field F, of
characteristic p, any non-trivial additive character  of ¥, and any non-
trivial character x of ¥y, the local system F(Fq, ¥, x, D) has G geom
either SO(D,@) or SL(D,@) or, if D =1, the group Gz(@) in its
seven-dimensional irreducible representation.

Proof. Case (1) is proven in [15, Theorem 19]. For case (2), we argue
as follows. Because p > 2D, F on Al/]Fq is geometrically Lie-irreducible.
Because its determinant is geometrically trivial, its Ggeom is connected, cf. [15,
Proposition 5]. Because JF is pure of weight one, its G geom is a semisimple group.
Therefore

G geom = Ggeom = (Ggeom)der'

Its highest oco-slope is D/(D — 1), which occurs with multiplicity D — 1.
Applying [17, 7.2.7], which lists the possible (G(g)eom)der, we see that Ggeom 18
one of the listed groups, except that we must show that if D is even, we cannot
have Sp. In fact, when D is even, no F is self dual. Indeed, the dual of a Fourier

transform is given geometrically by

(FT(A)Y = FT([x > —xT*((A)")).
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So by Fourier inversion, FT(A) is geometrically self dual if and only if there is
a geometric isomorphism

AZ[x = —x]* (D).
Here our A is £y (x) ® Ly, 1), 30 the requirement is
Lo @ Lyary = Lyt ® Ly (-0p):
which is equivalent to having
Ly ® Ly v (-xP) = Ly1()-

This is nonsense, because D is even and p > D > 2, so the left side has
Swans, = D, while the right side is tame at co. O

§4. Kubert’s finiteness theorems: statements. In the Spring of 1986, Kubert
lectured in my graduate course, proving that various Kloosterman and
hypergeometric sheaves had finite geometric monodromy.

THEOREM 4.1. For any prime power q, F(Fy, ¥, 1,q + 1) has finite
geometric monodronty.

THEOREM 4.2. Suppose q is odd. Then we have the following results:

() F@y, ¥, 1, (g + 1)/2) has finite geometric monodromy;
@) FEy, ¥, x2, (g + 1)/2) has finite geometric monodromy.

THEOREM 4.3. Letn = 3 be odd, q an arbitrary prime power. Then we have
the following results:

() FEy, ¥, 1,(q" 4+ 1)/(q + 1)) has finite geometric monodromy;
(2) for any non-trivial multiplicative character x oquX2 of order dividing qg+1,
F(qu, v, x, (@" + 1)/(q + 1)) has finite geometric monodromy.

§5. Proofs of Kubert’s theorems. As explained in 2.1 above, each local
system F on A! in question is geometrically, when restricted to G,,, the pullback
by the Dth power map of an explicit hypergeometric sheaf. So to prove the
theorems, it suffices to show in each case that the relevant hypergeometric sheaf
has finite Ggeom. The proofs of Theorem 4.1 and part (1) of 4.2 are given in
[22, 13.3]. To give the remaining proofs, we will make use of Kubert’s V
function [22, § 13]

V: (@/Z)prime top —> [0, 1),

giving the suitably normalized p-adic ords of gauss sums. As explained in
[22, § 13], this function has the following properties:

(1) V(x) =0ifand only if x = 0 in (Q/Z)prime to p3

(2)  for x non-zero in (Q/Z)prime to p» V(x) + V(—x) = 1;
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(3 V(1/2)=1/2;

(4) forany x in (Q/Z)prime to p> V(x) = V(px);

(5) forany x and y in (Q/Z)primeto p V) + V) =2 Vx+y);

(6) for any x in (Q/Z)primeto p» and any integer N > 1 prime to p,
YimedN V& +i/N)=V(Nx)+ (N —1)/2.

The application of this V function to showing that a hypergeometric sheaf
has finite geometric monodromy (or equivalently [17, 8.14.4] that after a constant
a%°8 twist to produce an F whose determinant is arithmetically of finite order,
the resulting F has finite Gaim) is given by the following proposition, quoted
from [22, 13.2].

PROPOSITION 5.1. Given the hypergeometric sheaf H := H(; xi 's; pj 's)
on Gy, / k and its twist F, pick any multiplicative character Teichy of k>* which
is faithful, i.e., has order #k — 1. Define a list of n + m elements (ay, . .., a,, by,
co b)) of 1/ (#k — 1))Z/Z by

%i = Teichy @#=D 5. Tejcp T#D

Then F has finite Gy if and only if the following conditions hold. For every
N e (Z/(#k — 1)Z)*, and for every x € (Q/Z)prime 10 p» we have the inequality

> V(Nai+x)+ > V(=Nbj —x) > (n—1)/2+ (1/n) Y _ V(Na; — Nb;).
i J i,j
When H is a Kloosterman sheaf of the form

Kl(yr; all non-trivial y of order dividing D)

for some prime to p integer D, the criterion is that for all x € (Q/Z)prime to p-
we have
V(Dx)+1/2 > V(x).

When H is a hypergeometric sheaf of the form
H(; all x of order dividing D; a single p of order M)

for D and M prime to p integers such that V(aD/M) = 1/2 for all integers a
prime to M, the criterion is that

V(Dx)+ V@a/M —x) > 1/2

for every integer a prime to M.
To prove part (2) of Theorem 4.2, we take D = (¢ + 1)/2and M = g + 1.
Here D/M = 1/2, so the condition V (D/M) = 1/2 is met. We have

Vll@+D/2x)+Via/(g+ 1D —x) =2 V(g —D/Dx+a/(qg+ 1),
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by property (5) of V. Using property (4), we have
Via/(g+1) —x)=V(ag/(q+1) —gqx) =V(-a/(g +1) —gx),
the second equality because ¢ is —1 mod g + 1. So we also have the inequality
V(g +1D/2Dx)+Via/(g+1) —x)
=V(((g +D/Dx)+V(=a/(g+1) —qx)
z V(A —=q)/2Dx —a/(g+ D).

Adding these inequalities, we get

2(V(((g + D/2)x) + V(a/(g + 1) —x))
2V((g—-D/Dx+a/(g+ D)+ V(A —-q)/2x —a/lg+1).
For x such that ((g—1)/2)x+a/(g+1) # 0in (Q/Z)prime to p» the two arguments
are non-zero negatives of each other, and by property (2) of V, they sum to 1 and

we are done.
In the remaining case,

(g+D/2Dx=x+Uqg—1)/2x =x—a/(g+ 1),
and hence
VI@g+D/2)x)+V(a/(g+1)—x)=V(x—a/(g+1)+V(a/(g+1)—x),

which is >1 unless x = a/(g + 1). In that case ((¢g + 1)/2)x = 0 in
(Q/Z)prime 10 p» but this is impossible, since a/(g + 1) has full order g + 1 in
(@/Z)prime to p-
To prove part (1) of 4.3, we take D = (¢" + 1)/(g + 1) with n > 3 odd. We
must show
V((@" +1)/(g+D)x)+1/2 > V(x).

This trivially holds for x = 0. For x # 0, use V(x) = 1 — V(—x) to write the
criterion as

V(" +1)/(g+ 1)x)+ V(—x) > 1/2 forall x # 0.

This sum is
>2V(((¢" +D/(g+1) = Dx).
Replacing V (((¢" +1)/(g+1)x) by V(g((g" +1)/(g+1))x), and replacing
V(—x) by V(—q"x), this same sum is
2V((q@" +1D/(@@+ 1D —q")x).

The two quantities ((¢" +1)/(g + 1) — l)x and (¢(¢" + 1)/(g + 1) — ¢"")x are
negative of each other, i.e., they sum to

(@+D@"+D/g+1)—1—-¢"x=0.
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So we are done, unless x is such that ((¢" +1)/(g +1))x = x in (Q/Z) prime to p-
In that case,

V((@"+D/(g+1)x)+V(=x) = V(@) + V(-x) =1,

as x # 0.

To prove part (2) of 4.3, we take D = (¢" + 1)/(¢ + 1) and we take M =
D(g + 1)/m, for m some proper divisor m of ¢ 4+ 1. Then D/M =m/(q + 1).
For any a prime to M, we have V(aD/M) = V(am/(q + 1)) = 1/2, thanks to
the Stickelberger identity [1, 11.6.1]. We must show that

V(Dx)+V(a/M —x) > 1/2
for all a prime to M. This sum is
> V(D —-Dx+a/M).

Replacing V(Dx) by V(¢ Dx) and V(a/M —x) by V(¢"a/M — q"x), this same
sum is
> V(gD —q"x +q"a/M).

The two quantities (D — 1)x +a/M and (gD — q"")x + q"a/M are negatives of
each other; they sum to

(@+1DD—1—-g"x+(q" +Da/M = (q" + Da/M
= (¢" + Dam/(D(q + 1))
=am =0 in (@/Z)prime to p-

So we are done unless x is such that Dx = x — a/M in (Q/Z)prime 1o p- In
that case,
V(Dx)=Vx —a/M),

and thus
V(Dx)+V@/M —x)=V(x—a/M)+ V(a/M — x).

So we are done unless x = a/M.But Dx —a/M,so Dx =0, i.e., D(a/M) = 0.
But
D(a/M) = D(am/(D(q + 1))) =am/(q + 1)

1S non-zero.
This completes the proofs of Kubert’s theorems.

§6. Some numerology for SL(2,F,). Suppose g > 5 is odd. The group
PSL(2, g) := PSL(2, F,) is simple, and, with the exception of g = 9, its Schur
cover group is the double cover SL(2, g) := SL(2, IF;). The group SL(2, g) has
two irreducible representations of degree (¢ — 1)/2, and two of degree (¢ +1)/2.
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The characters of these four representations all take values in the (ring of integers
of the) field Q(,/€q), with € = (—1)9~D/2. When ¢ is an odd power of p,
the characters of the two representations of each of the degrees (¢ £ 1)/2 are
algebraically conjugate, by the Galois group of Q(,/€q)/Q.

If ¢ is 1 mod 4, the two representations of even degree (¢ — 1)/2 are
both symplectically self-dual, and the two of odd degree (¢ + 1)/2 are both
orthogonally self-dual. Those of odd degree (g + 1)/2 factor through PSL(2, g),
but not those of even degree (¢ — 1)/2.

If g is 3 mod 4, none of these four representations is self-dual. Those of odd
degree (¢ —1)/2 factor through PSL(2, g), but not those of even degree (¢+1)/2.

§7. Some numerology for SU(odd n,F,). In this SU discussion, we assume
throughout that n > 3 is odd. We assume further that either ¢ > 2 or n > 3,
i.e., we rule out the case of SU(3, [F2). The group PSU(n, g) := PSU(n, F,) is
simple.

The group SU(n, q) := SU(n, F,;) has one representation of degree (¢" +
1)/(g + 1) — 1, and it has g representations of degree (¢" + 1)/(g + 1), cf. [14,
Theorem 16]. The representation of degree

G +D/(qg+1D -1

is symplectically self-dual. When ¢ is odd, precisely one of the g representations
of degree (¢" + 1)/(g + 1) is self-dual, and its autoduality is orthogonal. If ¢ is
even, none of the ¢ representations of degree (¢" + 1)/(q + 1) is self-dual.

The representation of degree (¢" +1)/(g + 1) — 1 factors through PSU(n, ¢).
When ¢ is odd, the unique self-dual representation of degree (¢ + 1)/(qg + 1)
also factors through PSU(n, gq).

The order of the center of SU(n,q) is ged(n,qg + 1). Of the g + 1
representations of degree either (¢" + 1)/(¢ + 1) — 1 or (¢" + 1)/(g + 1),
precisely (g + 1)/gcd(n, g + 1) of them factor through PSU(#n, ¢). [Notice that
if n = g 41, then g must be even (as n is odd), and none of the g representations
of degree (¢" + 1)/(q + 1) factors through PSU(n, ¢q).]

§8. The conjectures: preparations. In this section, we refine our determinant

calculations for the local systems which will figure in the conjectures.
We begin with the SL(2) case.

LEMMA 8.1. Suppose q is odd. Denote by o the additive character ¥_; :
X +— Y (—2x), and define

B:=pBFq, ¥, (g +1/2) :=—g(W-2, x2).
(1)  Suppose q is 1 mod 4. Then the twisted local system
GF,. v, 1. (g +1)/2) := FFy . 1, (q + 1)/2) @ B¢
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has
Ggeom C Gaiith C Sp((g — 1)/2, Qy),

and the twisted local system

GFy, ¥, x2, (g + 1)/2) := F(Fy, ¥, x2, (g + 1)/2) @ p4¢

has
Ggeom C Garith C SO((q + 1)/2, @)

(2) Suppose q is 3 mod 4. Then the twisted local system
GFq ¥, 1, (g +1)/2) i= FEq, ¥, 1, (g + 1)/2) @ ¢

has
Ggeom C Guaith C SL((g — 1)/2, Qy),

and the twisted local system

G(Fy, ¥, x2, (g + 1)/2) := F(Fy, ¥, x2, (g + 1)/2) @ g4

has
Ggeom C Garith C SL((g +1)/2, @)

Proof. That the G have arithmetically trivial determinants results from the
determinant calculation, using the quadratic character of 2 to simplify the
expressions.

When ¢ is 1 mod 4, the G have real traces (see the lemma below) and, being
pure of weight zero, are self-dual. As the G are irreducible, the autoduality is
unique up to a scalar factor, so its sign may be read from that of its restriction
to JF, its pullback to AI/E. As explained in [21, 3.10.3] and [17, pp. 242-243]
respectively, the autoduality is symplectic for F(Fy, ¥, 1, (¢ + 1)/2), and it is
orthogonal for F(F,, ¥, x2, (¢ + 1)/2). Hence for G(F,, ¥, 1, (g + 1)/2), its
G arith lies in the symplectic group Sp, and for G(F,, ¥, x2, (g +1)/2), its Grith
lies in the orthogonal group O. In this latter case, because the determinant is
arithmetically trivial, G4 lies in the special orthogonal group SO. O

LEMMA 8.2. The trace functions of the above local systems G take values in

Q(/79) for e, = (—1)@=D/2,

Proof. For p the characteristic of Iy, all traces a priori lie in Q(¢,). The
Galois group of Q(¢,)/Q is F, and the Galois group of Q(£,)/Q(,/€, p) is the
subgroup of squares in ]F;. For y either 1 or x2, and k/F a finite extension, the
trace att € k is

(1/8) Y x )Y 4D 1),

xek
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with g the gauss sum g := g(1/_2, x2). Each of these sums is invariant under the
effect of a2, for any a € IF; the “trick” being that a? = (a®)@*tY/2 Indeed, the
effect of a? is to map this sum to

(1/8) Y x )Y (@x9tD?2 4 1a’x)

x€k

=(1/2) Y x )Y (@®x) 9TV + 1a’x)

xek

= (1/g) Y x @)y (@)Y + ta’x)

x€k

= (1/8) > x )Y OV 4 1),

x€k

When g is an even power of p, then any a € IF; becomes a square b? for some
b e IP‘;, and then each sum is invariant under a, by the substitution x b2x
(now because b* = (b?)T1/2), O

We now turn to the SU(odd n) case. We assume that n > 3 is odd, and that
eitherg > 2 orn > 3.

LEMMA 8.3. Let f be a non-trivial additive character of ¥, which is
obtained from a non-trivial additive character of ¥, by composition with
Tracquz /Ry

(1) With

the twisted local system

G2, ¥, 1, (q"+1)/(g+1) := FFp, ¥, 1, (¢"+ 1)/ (g + 1) @ ¢

has
Ggeom C Garith C Sp((¢" + 1D /(g +1) — 17@)'

(2) Let x be a non-trivial multiplicative character of F;z whose order m
divides q + 1. Then for

B:=—q ifqiseven,  P:=—(—DYTD"g ifqisodd,
the twisted local system
G(F o 10 (" + D)@+ D) i= FEpo, ¥, x, (@' + D /(g + 1) @B

has
Gegeom C Garith C SL((¢" + 1)/(g + 1), Q).
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(3) In the special case when q is odd and x is xa, then B is —(—1)4TD/24
and the twisted local system

GF 2.V x2. (¢"+1)/(q+1) := FF 2. ¥, x2. (q"+1)/(g+1) @B

has
Ggeom C Garith C SO((qn + 1)/(q + D), QZ)

Proof. Parts (1) and (3) result from the D odd case of the determinant lemma.

Here
(n—3)/2

D=@@"+1/q+D)=1+q(q-1 Y q*
i=0
is odd, and D is 1 mod p. In both cases, the trace function of G has real (in fact,
integer, because a” = a fora e F; and such an a is a square, indeed a ¢ + 1’st
power, in [ ») values. As G is pure of weight zero, it is self-dual, and we argue
as in the proof of Lemma 8.1.

To prove (2), for ¥ a non-trivial additive character of F, and x a non-
trivial multiplicative character of IE‘;Z of order m dividing ¢ 4+ 1, we have the
Stickelberger determination [1, Theorem 11.6.1] of g(v, x) over [ 2; it is equal
to ¢ if g is even, and to (—1)@+tD/™g if ¢ is odd. [In the cited reference,
the v is a W that comes from [F,. So our ¥ is of the form W, for some
A€ IE‘;. But any such A is a ¢ + 1’st power in > (surjectivity of the norm), so

g, x) =g, x).] O

§9. The conjectures.

CONIJECTURE 9.1. Suppose q > 5 is odd. Then
(1) For
G:=0GF,;, ¥, 1,(q+1/2)

we have Ggeom = Guith, and this group is the image1 of SL(2, q) in one
of its irreducible representations of degree (q — 1)/2. If we choose a non-
square ). € F, and replace Y by ¥r;. : x = Y (Ax), then the group G geom
for

Gy, ¥i, 1, (g +1)/2)

is the image of SL(2, q) in its other representation of degree (¢ — 1)/2.
(2) For
g = g(qu W7 X2, (q + 1)/2)

we have Ggeom = Guith, and this group is the image2 of SL(2, q) in one
of its irreducible representations of degree (q + 1)/2, If we choose a non-
square ). € F, and replace Y by ¥r;. : x = Y (Ax), then the group G geom
for

Gy, Y, x2, (g +1)/2)

! This image is PSL(2, ¢) if the dimension (¢ — 1)/2 is odd, otherwise it is SL(2, g).
2 This image is PSL(2, ¢) if the dimension (g + 1)/2 is odd, otherwise it is SL(2, g).
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is the image of SL(2, q) in its other irreducible representation of degree
(g+1)/2.

CONJECTURE 9.2. Suppose n > 3 is odd. Then
(1) For
G:=GFp, v, 1, (" +1)/(g + 1)

we have Ggeom = Garith, and this group is the image3 of SU(n, q) in its
unique irreducible representation of degree

q@"+D/@+1) -1
(2) Ifq isodd, then for

G:=GF,2. ¥, x2,(¢" + D/(g + 1)

we have Ggeom = Gurith, and this group is the image PSU(n, q) of
SU(n, q) in its unique self-dual irreducible representation of degree

(@"+D/(g+D.

(3) Let x be one of the q non-trivial characters x of IF;Z of order dividing
q + 1. For
G:=GEFp, ¥, x,(¢"+1/(@@+D)

we have Ggeom = Garith, and this group is the image4 of SU(n, q) in
precisely one of its q irreducible representations of degree

(" +1/(g+D.

§10. Comments on the conjectures. Suppose we use a non-trivial additive
character ¥ of IF, which comes (by composition with the trace) from a character
of the prime field IF,,. Then both the local systems

FEqg, v, 1, (g +1)/2) and F(Fq, ¥, x2,(q +1)/2)

on A'/F ¢ come, by extension of scalars, from the local systems

FEp, ¥, 1,(qg+1/2) and FFp, ¥, x2, (¢ +1)/2)

on AI/IF,,. Moreover, if we use the gauss sum —g(¥_5, x2) over F, as the
twisting factor, we get descents

g(]Fpa wa ]]-’ (q + 1)/2) and g(]Fp’ W, X2 (6] + 1)/2)

3 Except in the case of SU(3, 2), the image group is the simple group PSU(#n, ¢). In the case of SU(3, 2),
the group PSU(3, 2) is not simple, and has a quotient Qg, the quaternion group of order eight, which is
the image group.

41t ged(n, g + 1) = 1, then SU(n, g) = PSU(n, gq) is simple, so this image is PSU(n, ¢). When ged(n,
g+ 1) =N > 1,sothat PSU(n, g) = SU(n, q) /1y, we conjecture the following exact determination of
this image: for M the largest divisor of N for which the order of x divides (¢ + 1)/M, this image is the
quotient SU(n, )/ pr-

Downloaded from https://www.cambridge.org/core. IP address: 71.188.98.234, on 01 Aug 2018 at 18:11:27, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/50025579318000268


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579318000268
https://www.cambridge.org/core

802 N. M. KATZ

to Al/F p» of the corresponding G on Al/F ¢- The Ggeom groups for the descents
do not change, but their G, groups can grow. A natural guess for what they
are is the following. The Galois group of I, /IF, acts coefficientwise on the
group SL(2, g) and fixes the isomorphism classes of both representations of
degree (¢ — 1)/2 and of both representations of degree (¢ + 1)/2 (because the
Galois action preserves each of the two conjugacy classes of unipotent elements,
which are distinguished by whether the upper right entry is a square or not). So
each of these representations extends to the semidirect product of SL(2, g) with
Gal(F, /F ). The natural guess is that G, for the descended G is the image of
this semidirect product in the corresponding representation.
Similarly, when v starts life over IF,, for each odd n > 3 the local system

FFp, ¢, 1, (@" + /(@ + 1)
and, if ¢ is odd, the local system
FEp, ¥, x2, (" +D/(@+ 1)

descend to A!'/F p; Justreplace F > by I, in the name. In the g odd case, using
—g(W(_1ym-nr2, x2) over ), as the twisting factor, we get a descent G(F,, ¥,
x2, (@" + 1)/(g + 1)) to AI/IFP of the corresponding G. When ¢ is 3 mod 4,
this same twisting factor (or any quadratic gauss sum over [ ,) gives a descent
G, ¥, 1, (g" + 1)/(g + 1)). We do not know the “right”5 twisting factor to
use when ¢ is not 3 mod 4. Just as in the paragraph above, the G geom groups for
the descents do not change, but their G groups can grow. The Galois group
of F 2 /IF, acts coefficientwise on the group SU(n, ¢) and fixes the isomorphism
class of its unique irreducible representation of degree

@"+D/g+1D—1

(precisely by the uniqueness). When ¢ is odd, the Galois action also fixes the
isomorphism class of the unique orthogonal irreducible representation of degree
(g"+1)/(g +1) (again by uniqueness). So each of these representations extends
to the semidirect product of SU(n, g) with Gal(F,/F,). The natural guess is
that Grign for the descended G is the image of this semidirect product in the
corresponding representation.

Once we think in terms of these descents, the following question arises.
Suppose we are in a given characteristic p, and are told that one of
the conjectures applies to JF(F,, 1, D) (in which case it also applies to
F(Fp, x2, D) when p is odd). Can we be sure which conjecture?

Can there be more than one way of writing D as (¢" + 1)/(g + 1) for ¢
some power of p and n some odd integer > 3? The answer is no. Begin with the
identity

@ +D/@+D)=1-g+q¢* - +q¢" "' =1+q@—- Dl +q¢*+---+4¢" .

St q is p%, we can use any 2ath root of —g as the twisting factor, but this seems ad hoc at best.
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When g is p”, the base p expansion of ¢ — 1 is a sequence of r digits, each p — 1.
So the base p digit expression of (¢g"” + 1)/(g + 1) — 1 is (n — 1)/2 successive
strings, each consisting of r digits p — 1 followed by r digits 0. For example, in
base p we have

PP+ 1D/ + 1) —1=XXX000XXX000 withX =p — 1.

So both r and » are determined by the base p expression of D — 1.

When p is odd, we must also distinguish (¢g" + 1) /(g + 1), ¢ some power of
p and n > 3 odd, from (p® + 1)/2,a > 1. If p > 5, two such expressions can
never be equal, because the first is 1 mod p and the second is 1/2 mod p. To do
the general case, subtract 1 from each and compare the base p expressions. That
of (p® — 1)/2 consists of a sequence of a digits, each (p — 1)/2. We must also
note that if D = (p® + 1)/2, then p“ is determined, itis 2D — 1.

A slight variant on this question is this. Still in a fixed characteristic p, can
there be more than one local system of a given rank R to which one of the
conjectures applies? If R is to be either (¢" +1)/(g+1) or (¢{" +1)/(g1 +1)—1,
we can tell which of the two, because the first is 1 mod p and the second is
0 mod p. Then looking at the base p expansion of R tells the rest. Similarly,
looking at the base p expansions of (p® 4+ 1)/2 = (p* — 1)/2 4+ 1 and of
(p* — 1)/2 allows us to separate these cases from each other and from the SU
cases.

On the other hand, for a given rank, different characteristics can give rise
to cases of the conjectures. For example, any time we have twin primes or
twin prime powers (e.g. 9,11 or 23,25 or 27,29 or 79, 81 or 81, 83), say
q2 = q1+2,then F(IFy,, ¥, x2, (g1+1)/2) in characteristic py and F(Fy,, ¥, 1,
(g2 + 1)/2) in characteristic p; are local systems of the same rank (g; + 1)/2 =
(g2 — 1)/2.

More interesting examples involve ranks having SL conjectures in some
characteristics and SU conjectures in others. For example, with rank 6
we have

FEFs3, 9,1, 3 +1)/3B+1))

in characteristic 3, and the two SL cases for the twin primes 11, 13.
For rank 7, we have

FF3, 9, x2, (3 + 1D/G + 1)),

which has Ggeom the image of SU(3, 3) in its unique orthogonal irreducible
representation of degree 7, cf. [20, 4.15], and we have

FF13, 9, x2, 13+ 1)/2)

which has Ggeom = PSL(2, 13), cf. [20, 4.13]. In both of these rank 7 cases,
G geom is a subgroup of the exceptional group G».
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For rank 10, we have
FEF2, v, 1,27+ D/2+ 1)
in characteristic 2, and we have

FFr9, ¥, x2, 194+ 1)/2)

in characteristic 19.
For rank 11, we have

FFa ¥, x3. 22+ 1/ + 1)

in characteristic 2, with 3 either of the two characters of ]FI of order 3, and
we have
F (s, v, 1,23+ 1)/2)

in characteristic 23.
For rank 12 we have

F@, v, 1, @ +1)/(4+1)

in characteristic 2, and the two SL cases for the twin prime powers 23, 25.
For rank 13 we have

FFa, 9, x5, @ +1)/(4+ 1))

in characteristic 2, with x5 any of the four characters of order 5 of IE‘:Z, and the
two SL cases for the twin prime powers 25, 27.
For rank 20 we have

FFs, v, 1,(5°+ D/5+1)
in characteristic 5, and we have
FFa1, 9,1, (41 4+ 1)/2)

in characteristic 41.
For rank 21, we have

F(Fs, ¢, x2, (5> + 1)/(5+ 1))

in characteristic 5, and the two SL cases for the twin primes 41, 43.
For rank 993, we have

F(Fa, v, x2, ¥ +1)/(2° + 1))
in characteristic 2, and we have
F(Fro87, ¥, 1, (1987 + 1)/2)

in characteristic 1987.
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§11. Verification, for SL(2, p).

THEOREM 11.1. Suppose q is an odd prime p > 5. Then Conjecture 9.1 for
p is correct.

Proof. Let G be one of the local systems in question, i.e., either

g(]Fpa wa ]lv (p + 1)/2) or g(F[N 1/fa X2 (P + 1)/2)

Its Ggeom has order divisible by p (the wild inertia group Poo acts non-trivially
on G), its determinant is trivial, and it is a primitive irreducible subgroup of
SL(n, Q) with n one of (p & 1)/2. [It is primitive because if the representation
were induced, G would be, geometrically, the direct image of a local system on a
finite étale connected covering of A! /E of some degree d > 1 dividing n. But
n < p,henced < p, and A! /IF_p has no finite étale connected covers of degree
1 < d < p.] The larger group G 4im has the same properties.

We have already seen that the trace functions of both these local systems take
values in Q(,/€p) for e = (— 1)(P=D/2 Because p > 5, the only roots of unity in
this field are 1. So the only scalars which can possibly lie in G geom Or Garith are
among 1. As these groups are irreducible subgroups of the ambient SL (12, Q),
we conclude that

Z(Garith) = Z(Ggeom) = {1} if n is odd,
Z(Gaith) C Z(Ggeom) C £1  if nis even.

Consider first the case of G = GF,, ¥, 1,(p + 1)/2). Here the
representation has dimension n = (p — 1)/2, and so p = 2n + 1. By
[2, 2B), (20)], both Ggeom/Z(Ggeom) and Gaith/ Z(Garith) are isomorphic to
PSL(2, p). If n = (p — 1)/2 is odd, then the centers are trivial, and we are done.
If n = (p—1)/2 is even, then neither center can be trivial, since PSL(2, p) has no
irreducible representation of degree n = (p — 1)/2. Thus both Ggeom and G asith
contain %1, and their quotients by &1 are PSL(2, p). Neither Ggeom 0r Garith
can be isomorphic to the product =1 x PSL(2, p), again because PSL(2, p) has
no irreducible representation of degree n = (p — 1)/2. So both Ggeom and G usith
are isomorphic to the Schur double cover of PSL(2, p), which is SL(2, p), and
again we are done.

In the case of G := G(F p» ¥, x2, (p + 1)/2), the representation dimension
isn = (p+1)/2. In this case p = 2n — 1 > n + 1 (because p > 5), and
Brauer, cf. [2, (2B)] and [3], tells us that, by a theorem of Feit [7], only the
first power of p divides #G aith/ Z (G arith) or divides #G geom/Z(Ggeom)- As the
centers have order dividing 2, only the first power of p divides either #G i Or
divides #G geom. Furthermore, the p-Sylow subgroups of Ggeom are not normal
subgroups. Otherwise the quotient of Ggeom by the p-Sylow subgroup would be
a prime to p quotient of 71 (A! /E), so trivial, hence Ggeom Would be a p-group,
in fact of order p, which is nonsense, as it has an irreducible representation of
degree 1 < n < p.Because p only divides #G it to the first power, its p-Sylows
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are conjugate to p-Sylows of Ggeom, 0 they are certainly not normal subgroups
of Garith.

This information allows us to apply a theorem of Tuan [28, p. 111, first
four paragraphs], which tells us that for p > 7, both Ggeom/Z(Ggeom) and
G arith/ Z (G gritn) are isomorphic to PSL(2, p). For p = 5 (respectively p = 7)
we could also have the alternating group Ag (respectively A7) in addition to
PSL(2, p).

In the case p = 5, we have shown in [20, 3.9] that Ggeom is PSL(2, 5) = As.
The group As is its own normalizer in SO(3, Q). hence we have G i = As as
well.

In the case p = 7, we invoke an extraordinary isomorphism®, where we
exploit the fact that for the rank three local system

G3 =07, ¢, 1,4),
we already know that Ggeom = Garith = PSL(2, 7). We wish to prove that for

Gs:=GE7, Y, x2,4),

both Geeom/Z(Ggeom) and Gusith/ Z (G arith) are isomorphic to PSL(2, 7). The
extraordinary isomorphism is

Sym?(G3) = A%(Ga).

Granting this, which we will prove below, we argue as follows. The images of
both nfeom(Al /IF7) and of nfr“h(Al /IF7) acting on G3 are PSL(2, 7), so this is
also their image acting on Sym2 (G3) (the homomorphism

Sym? : SL(3, Q;) — SL(6, Q)

is injective). Therefore their images acting on A%(G4) are also PSL(2). The
homomorphism L L
A% :SL(4, Q) — SO(6, Qo)

(which is the spin double cover of SO(6)) has kernel 41, so the images of
both nfeom(Al /IF7) and of nf‘mh (A!/F7) acting on G4 have Ggeom/Z(G geom) =
Garith/ Z(Garith) = PSL(2, 7).

Once we know that both Ggeom/Z(Ggeom) and Garith/Z(Garith) are iso-
morphic to PSL(2, p), we argue as follows.

If pis 1 mod 4, then (p + 1)/2 is odd, and the ambient group SO((p + 1)/2,
Q) contains no scalars other than 1. So in this case the centers Z (Ggeom) and
Z(Garitn) are trivial, and we conclude that Ggeom = Garith = PSL(2, p).

If p is 3 mod 4, then (p + 1)/2 is even, and PSL(2, p) has no irreducible
representation of dimension (p + 1) /2. Therefore neither of the groups Ggeom or
G aiith can be either PSL(2, p) or the product £1 x PSL(2, p). Therefore each of
these groups is the Schur double cover of PSL(2, p), which is SL(2, p).

6 We will see later, in Theorem 16.6, that this isomorphism is one a panoply of such isomorphisms.
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It remains to show that when we choose a non-square A € F 7, and replace
Y by ¥y, : x = ¥ (Ax), then in both cases we replace Ggeom by the image of
SL(2, p) inits other representation of the same dimension. In both cases the trace
functions of the two representations of the given dimension (either (p — 1)/2 or
(p+1)/2) are known to be Galois conjugates of each other, by Gal(Q(,/€p)/Q).
The replacement of ¢ by 1, performs the conjugation by the non-trivial element
in this Galois group. O

§12. Existence of the extraordinary isomorphism. We first show the existence
of a geometric isomorphism between Symz(gg) and A2(Gy). For this, we use the
following.

LEMMA 12.1. Suppose A and B are Qq local systems on Al/Fq which are
both pure of weight zero, and of the same rank r. Let . € R be an upper bound
for the oo slopes which occur in either A or B. Suppose that A is geometrically
irreducible. Denote by A the dual of A. Then we have the following results.

(1)  There exists a geometric isomorphism between A and B if and only if the
cohomology group o
HX(A'/F,, A® B)

is non-zero, in which case it is of dimension one.
(2) Ifthis HC2 vanishes, then

dim(H!(AY/F,, A® B)) < (» — 1)r?,

and for every finite extension field k of IF4, we have the estimate

Z Trace(Froby x|.A) Trace(Frob, x|B)| < (A — Dr2#k.

tek

Proof. Because A and B and A® B are pure, they are geometrically
semisimple, hence the H? in question is the group Homgeom (A, B). Because
A is geometrically irreducible and of the same rank as B, any non-zero hom is
automatically an isomorphism. So if this H 62 is non-zero, B3 is also geometrically
irreducible. The one-dimensionality then follows from Schur’s lemma.

If the Hf vanishes, then the Euler—Poincaré formula gives

dim H! = —x.(A'/F,, A® B)
= Swan(A ® B) — rank(A ® B) < ar? —r2 = (A — D)r.
The sum of traces

Z Trace(Froby k |A) Trace(Froby | B)

tek

is minus the trace of Frob; on the H!, so by Deligne’s Weil II estimate, its
absolute value is bounded by dim(HCl)«/ #k. Ol
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We now apply this lemma, with A = Sym?(Gs3) and with B = A2(G4). Both
are of rank 6, pure of weight zero, and with oco-slopes < 4/3. The quantity
(A — Dr? is thus 12.

To see that Sym?(G3) is geometrically irreducible, we argue as follows. We
already know that Ggeom for Gz is PSL(2,7) in one of its three-dimensional
irreducible representations, call it p3. The character table of PSL(2, 7) shows that
Symz( p3) is the unique irreducible six-dimensional representation of PSL(2, 7).

Calculation in Magma shows that the sum of traces over the field k = G F (7%)
is approximately

18.4662642527365302439092364832ﬁ.

This shows that the H? cannot vanish, and hence we have the asserted
geometric isomorphism. Because both sides are geometrically irreducible, there
exists a lisse rank one £ on A!/F; for which there exists an arithmetic
isomorphism of Symz(gg) with £ ® A2(Gy). The Swan conductor at co of £
is <4/3, hence either 0 or 1. Thus £ is of the form ¢%€™® ® L4 for some

scalar o € @X, and some a € 7. At both the points t =0 and ¢t = 1, Symz(gg)
and A%(G4) have equal 7 traces, namely 2 and —1 respectively. So we have two
equalities

ay(0) =1, ay(a) = 1.

Thus « = 1 and a = 0, i.e., L is arithmetically trivial. Thus there exists an
arithmetic isomorphism of Sym2 (G3) with A2(Gy).

§13. PGL(2,q) d’apres Gross, and hypergeometric sheaves. We write
PGL(2,F;) := PGL(2, g), g any prime power, though later we will specialize
to the case ¢ odd. In [10], Gross, using results of Lusztig [25], explains how
to view the Deligne-Lusztig curve as a PGL(2, ¢) torsor 7 on G, /F,. On T,
the inertia and wild inertia groups at 0 and oo are given explicitly in terms of
the Borel B, its unipotent radical U, the split torus Tpy, of order ¢ — 1, and the
non-split torus Tysp|, of order g + 1. We have

Isoc = B> Py =U, Io/Poo = spls
Iy = Tyspls Py = {1}.

Concretely, the complete Deligne—Lusztig curve in this case is IEDl/]Fq, on
which PGL(2, ¢) acts in the usual way by fractional linear transformation. This
action is free on P! \ P!(F ). The quotient of P! /F, by PGL(2, q) is P! /F,.
The map to the quotient is given explicitly, in terms of a coordinate x upstairs,
by

(7 =0/ — DT (@ =017 4 et
(x9 — x)‘](fI*I) - (x9 — x)‘](‘]*l)

It maps P! (Fy) to oo, and it maps IP’I(qu) \ IP’I(IFq) to 0. Using the fact that
PGL(2, g) is generated by the transformations x > ax, a € IF;, x +— 1/x,and
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by the translations x — x + b, b € F,, one checks that the map is PGL(2, g)-
equivariant. For 7 in an overfield of I, the fibre over ¢ consists of the roots of
the polynomial

f) = (7 =) 4 I — (7 — x)1TD,
Its derivative is easily computed to be
f@) =167 =0+ 17 =),

whose only zeroes lie in [F 2, all points of which map to either oo (for x € Fy)
or to 0 (for x € F > \ Fy). Thus the map makes P!\ ]P’I(qu) into a finite étale
covering of Gy, /IF, of degree g(q — 1)(q + 1) = #PGL(2, g). As the map is
PGL(2, g)-equivariant, it must be the quotient map.

Now take an irreducible Q-representation

p : PGL(2, ¢) — GL(dim(p), Qo),

of dimension > 1, and denote by W, the local system on G,,/F, obtained
by “pushing out” the torsor 7 by p. Thanks to [10, Corollary p. 2537], we
have a great deal of information. First of all, Swan,,(W,) = 1. This fact
implies that WV, is, geometrically (i.e., on Gy, /E), a multiplicative translate
of a hypergeometric sheaf, cf. [17, 8.5.3.1].

In what follows, we fix a choice of additive character ¥ of F,, and write
simply

H (character data)

for the hypergeometric sheaf
Hyp(!, ¥ the same character data)

in the notation of [17, 8.2.2].

For the Steinberg representation, St of dimension ¢, we have dim((Ws)'>)
= 1 and dim((Ws;)’) = 0. For all other irreducibles p of dimension > 1, we
have dim((W,)’*) = 0 and dim((W,)%) = 1.

The irreducible p of dimension > 1 have dimension eitherq — 1, ¢, or g + 1.
Looking at the character table of PGL(2, ¢g), we see that the trace of a non-trivial
unipotent element in one of these representations is

—1 if dim(p) =¢q — 1,
0 if dim(p) = ¢,
1 if dim(p) =¢q + 1.

This means that, writing Reg for the regular representation of P, the action of
p| P is given by
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810 N. M. KATZ
Reg — 1 if dim(p) =¢q — 1,
Reg if dim(p) = ¢,
Reg+ 1 if dim(p) =¢g + 1.
This in turn means that the /,-representation is of the form
Wild, | if dim(p) =¢ — 1,
Wild, 1 & (1 dim tame) if dim(p) = g,
Wild, 1 © (2 dim tame) if dim(p) = ¢ + 1,
where we write Wild, 1 for a totally wild /-representation of dimension g — 1
and Swan 1.
The Iy-representation, being tame, consists of various characters of order
dividing ¢ + 1. No character can occur more than once, otherwise the local

monodromy at 0 will not be of finite order, cf. [17, 8.4.5(5)]. Thus our
hypergeometric must be a multiplicative translate of

‘H (all but two char.’s of order dividing g + 1; %),
if dim(p) =¢q — 1,

“H (all but one char. of order dividing ¢ + 1; one char. of order dividing g — 1),
if dim(p) =gq,

‘H (all char.’s of order dividing ¢ + 1; two char.’s of order dividing ¢ — 1),
if dim(p) =q + 1.

These facts, together with what we already know about Wk, show that Ws;
is, geometrically, a multiplicative translate of

‘H (all non-triv. char.’s of order dividing ¢ + 1; 1).

We now bring to bear the fact that every irreducible p is orthogonally self-
dual. Then from [17, 8.8.1 and 8.8.2] we see that for any other (i.e., other than
Steinberg) irreducible p of dimension > 1, its 7{ must have:

(1) In dimension g — 1, the two omitted characters are x, x with x # ¥, and
x of order dividing ¢ + 1.

(2) Indimension ¢, with g odd, the omitted character is the quadratic character
X2, and the bottom character is x3. [If ¢ is even, St is the only irreducible
of dimension q.]

(3) In dimension g + 1, the two “downstairs” characters must be x, x with
x # x and x of order dividing ¢ — 1.

When ¢ is odd, there are precisely (¢ — 1)/2 unordered pairs x, x as in (1)
above, and there are precisely (¢ — 3)/2 unordered pairs x, x as in (3) above.
When ¢ is even, there are g /2 unordered pairs x, x as in (1) above, and there
are precisely (¢ — 2)/2 unordered pairs x, X as in (3) above. These are precisely
the number of irreducible p of dimensions ¢ — 1 and g + 1 respectively. So each
W, with p an irreducible of dimension > 1 is, geometrically, a multiplicative
translate of a hypergeometric of specified form, and every hypergeometric of that
specified form is, geometrically, a multiplicative translate of a W,,.
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§14. Descent of hypergeometric sheaves. Let us denote by

Hp-data
the hypergeometric sheaf
Hyp(!, v, character data determined by p)

which occurs geometrically as a multiplicative translate of W,. Each such
has a canonical descent to G, /F,, the point being that in all cases both the
“upstairs” characters and the “downstairs” characters are Gal(E/ IF,)-stable sets
of characters. Let us call any such hypergeometric “descendable to F,”. In the
description [17, 8.2] of a hypergeometric as the multiplicative convolution of
a Kloosterman sheaf Kl, with the “upstairs” characters with the [x +— 1/x]
pullback of a Kloosterman sheaf Klgoyyn with the inverses of the “downstairs”
characters (and the additive character v/), both factors have canonical descents,
cf. [16, 8.8], and the convolution of these descents is the desired descent

7'[,o—data, desc

of our H y_data-

LEMMA 14.1. Given a hypergeometric H on G,, /E which is descendable to
F, and a character x of F ;, the formation of the canonical descent commutes
with the operation of tensoring with L, :

(H X £x)desc = Hdesc &® ﬁX on Gm/]Fq.
In particular, if H is geometrically isomorphic to H ® L, then
Haese = Hdese ® ’CX on Gm/Fq.

Proof. The second assertion is a special case of the first. The first is clear
from the explicit description of the canonical descent of a descendable H,
which separately breaks the upstairs and downstairs characters into orbits under
Gal(IF_q/Fq), and then reduces to the case of Kloosterman sheaves formed on
single orbit, i.e., those of the form

r—1

KI(A, AY, ..., A9 )

for some r > 1 and some character A of F, which has r distinct Galois
conjugates under the action of Gal(IF,r /). O

At the same time, we have the local system W, on G,,/F, with which we
began. It is geometrically isomorphic to a multiplicative translate of H ,_data, desc-
Recall from [17, 8.5.4] that a hypergeometric sheaf is isomorphic to no non-
trivial translate of itself. That the translation is by a point of G, (IF;) results
from the following rationality lemma.
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812 N. M. KATZ

LEMMA 14.2. Let k be a perfect field, G/k a smooth, geometrically
connected group scheme, £ a prime invertible in k, and A and B two Qq local
systems on G which are both geometrically irreducible. Suppose that:

(1) the local system _B is not geometrically isomorphic to any non-trivial (i.e.,
by a point of G (k) other than the identity) translate of itself;
(2) the local system A is geometrically isomorphic to a translate of B.

Then there is a unique point y € G (k) such that A is geometrically isomorphic
to the translate [g — v g1*(B), and this point y lies in G (k).

Proof. The uniqueness is obvious, from condition (1). Now consider the local
system C on G x; G, coordinates (¢, g), given by

C(r, 8) = (A(g) ® B(tg).

In fancier terms, we have the multiplication mapm : G Xy G — G, (t, g) — tg,
and our C is

C:= pr3(AY) @ m*(B).
For d the relative dimension of G over k, the sheaf RZd(prl)g(C) on G is

supported at y. Therefore y is rational over the perfection of k. As k is perfect,
y lies in G (k). ([l

Thus there exists a unique a, € k> such that there exists a geometric
isomorphism

Wp =[x apx]*Hp-data,desc = Hap,p-data,desc-

As both are geometrically isomorphic, there exists a unique o, € Q¢ such that
on G, /F, we have an arithmetic isomorphism

~ deg
W, = Hap,p-data,desc Rap-.

THEOREM 14.3. For each irreducible representation p of PGL(2,q) of
dimension > 1, the local system

. deg
H, = ,Hap,p-data,desc ®ap

on Gy, [y has Ggeom = Garith = the image of PGL(2, q) in the corresponding
representation p.

Proof. The statement is tautologically true for the local system W,. (]
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§15. Pulling back from PGL(2, q) to PSL(2, ¢). In this section, we assume
that g is odd. Then PSL(2, ¢) is a subgroup of index two in PGL(2, g). If we
think of the Galois theory diagram of the geometric covering 7 — G, /F, as a
finite étale covering with group PGL(2, g), then we have a diagram

T — S — Gun/Fy,

in which 7 — SisaPSL(2, g) torsor, and § — G, /F gisa finite étale covering
of degree two. As Gross explains in [10, bottom of p. 2537], this last covering is
the squaring map

[2]: x > x2

of G,,/F, as a covering of itself. What this means concretely is that for p
an irreducible representation of PGL(2, ¢) of dimension > 1, its restriction to
PSL(2, q) is given by the local system on G, /I, which is the pullback [2]*W,.

Let us recall the following irreducibility lemma, which we will apply both
with k = F, and with k = F,.

_ LEMMA 15.1. Let £ # p, p odd, k a field of characteristic p, and H a lisse
Q¢-sheaf on G,/ k which is irreducible. Then:

(1) [21*H is irreducible if and only if H is not isomorphic to H ® L,;
(2) if H is isomorphic to H ® L,, then [21*H is isomorphic to a direct sum
A® B withB=[x —~ —x]*A.

Proof. We use Frobenius reciprocity to compute

(21H, 21"H) = (H, [2121"H) = (H, H ® [21,Q¢)
=HHQ QD Ly,)) = (H, H)+ (H,HLy,).
This makes (1) obvious. If we are in situation (2), then ([2]*H, [2*H) = 2,

hence [2]*H is A & B with A not isomorphic to 3 (otherwise [2]1*H is A & A,
in which case ([2]*#, [2]*#) would be 4). Let A have rank(.4) < rank(53). Then

(Ha [2]*-’4) = ([2]*7-[» A) = 1?

so H occurs in [2],A. But as rank(A) < rank(B), we have rank(#H) >
rank([2],.4). Therefore we have H = [2],.A. In particular, H has even rank

and A has rank half that of {. [The same argument then applies to 5, and so
H = [2],5.] Then

RI'ZRI'R2LAZ A [x —» —x]"A. O
We now apply this to the hypergeometric sheaves

. deg
Hp = Hap,p-data,desc Rap”,

which give the W,,.
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Those of rank g — 1 are, geometrically,
Ha, (all char.’s of order dividing g + 1 save x, X)

with y # x of order dividing ¢ + 1. This will have its [2] pullback irreducible

unless the unordered pair {, x} is equal to the unordered pair {x x2, X x2}. This

equality can only hold if x has order 4, which is only allowed if ¢ is 3 mod 4.
Those of rank g + 1 are, geometrically,

M, (all char.'s of order dividing g + 1; x, %)

with x # x of order dividing ¢ — 1. This will have its [2] pullback irreducible

unless the unordered pair {x, x} is equal to the unordered pair {x x2, X x2}. This

equality can only hold if x has order 4, which is only allowed if g is 1 mod 4.
Thus we have the following theorem.

THEOREM 15.2. For q odd, we have the following results.
(1a) Suppose g is 1 mod 4. Then the [2] pullback of

Ha,,,desc (all char.'s of order dividing q + 1; x4, X4) ® ageg

on G, /Fy is the direct sum A @ [x — —x]*A with A geometrically
a unique multiplicative translate (necessarily by a point of G, (F,),
cf. 14.2) of the hypergeometric sheaf

H(all chars of order dividing (g + 1)/2; x2).

A and [x — —x]*A are local systems on G,,/F, giving the two
representations of PSL(2, q) of dimension (q + 1)/2. Each has G geom =
Gaith = PSL(2, q).

(1b)  Suppose q is 1 mod 4. Then every other W, of rank >1 pulls back by
[2] to an irreducible local system. Of these, W, and W, ® L x> have the
same pullback. So we get (q — 5)/4 irreducible pullbacks of rank q + 1,
we get (q — 1)/4 irreducible pullbacks of rank q — 1, and we get one
irreducible pullback of rank q. These local systems give all the irreducible
representations of PSL(2, q) of dimension g + 1,q — 1, or q.

(2a) Suppose q is 3 mod 4. Then the [2] pullback of
Ha,,,desc (all chars of order dividing q + 1 save x4, X3) ® ageg

on G, /Fy is the direct sum A @ [x — —x]*A with A geometrically
a unique multiplicative translate (necessarily by a point of G, (F,),
cf. 14.2) of the hypergeometric sheaf

H(all char's of order dividing (g + 1)/2 save x2).

A and [x — —x]*A are local systems giving the two representations of
PSL(2, q) of dimension (q —1)/2. Each has G geom = Guarith = PSL(2, q).
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(2b)  Suppose q is 3 mod 4. Then every other W, of rank >1 pulls back by
[2] to an irreducible local system. Of these, W, and W,, & L x> have the
same pullback. So we get (q — 3) /4 irreducible pullbacks of rank q + 1,
we get (¢ — 3)/4 irreducible pullbacks of rank q — 1, and we get one
irreducible pullback of rank q. These local systems give all the irreducible
representations of PSL(2, q) of dimensionq + 1,q — 1, or q.

Taking into account [17, 9.3.2], we get the following theorem. Let us write
Kl(x, %) for the Kloosterman sheaf KI(!, ¥; x, X).

THEOREM 15.3. Suppose q > 3 (so that PSL(2, q) is a simple group). We
have the following results.

(1) Let x # X be characters of order dividing g + 1, with x* # 1. Then
FT([g + 11"K1(x, X))
is an irreducible rigid local system of rank g — 1 on Al /E whose G geom
is the group PSL(2, q). For a unique o, € @X, the local system
— d
FT([q + ITKI(X 5 X)dese) ® ‘Xpeg

on Gm/Fq has Ggeom = Gaith = PSL(2, g). o
(2)  The irreducible rigid local system of rank q on A'/ Iy given by

FT(lg + 11"KI(L, 1))

has Ggeom the group PSL(2,q) in the Steinberg representation. For s

. —X
unique as; € Qp , the local system

* d
FT(lg + 1"KI(L, 1)gese) ® argy™

on Gy, /Fy has Ggeom = Garith = PSL(2, ¢).
(3) Let x # X be characters of order dividing g — 1, with x* # 1. Then

FT([g + 1T"K1(x, X))
is an irreducible rigid local system of rank g + 1 on Al /E whose G geom
is the group PSL(2, q). For a unique o, € @X, the local system
— d
FT(lg + 11'KI(X, X)desc) ® @)™

on Gm/ﬂ?q has Ggeom = Guaiith = PSL(2, g).
(4) Ifqis 1 mod 4, then

FT([(g + D/21"KI(x2)) = FT(Ly,x) ® Ly (xa+1r2))
is an irreducible rigid local system of rank (¢ + 1)/2 on AI/E whose
Ggeom is the group PSL(2, q). For s unique ), € @X, the local system
d
FT(Lyy 1) ® Ly rary) @ ap®
on Gm/Fq has Ggeom = Guaith = PSL(2, g).
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(5) Ifqis3 modd4, sothat (g + 1)/2 is even and hence
[(g + 1)/2I"Kl(x2) = [(g + 1)/2]"KI(1),
then

FT([(g + 1)/2]"Kl(x2)) = FT([(g + D)/2I'KI(1)) = FT(Ly rw+vr2))

is an irreducible rigid local system of rank (q — 1)/2 on AI/IETQ whose
Ggeom is the group PSL(2, q). For s unique c,, € @X, the local system

d
FT(L ) @ ap®

on G, /Fy has Ggeom = Garith = PSL(2, q).

(6) Ifin (4) and (5) we replace W by ¥, : x — Y(ax) with a € F; a non-
square, then we obtain a local system whose monodromy representation is
the other irreducible of dimension (q + 1)/2 if q is 1 mod 4 (respectively
of dimension (q — 1)/2 if g is 3 mod 4).

(7) The monodromy representations of the aforementioned local systems
provide all the irreducible representations of PSL(2, q) of dimension > 1.

Proof. If we translate a local system on G,,/F, by a point of G, (IF,), we
change neither Ggeom NOr G aith. This allows us to ignore the unique translations
by points of G, (F,) in the statement of the previous theorem. Assertions (1)
through (5), and (7), then result from the previous theorem, together with [17,
9.3.2(1)], according to which

FT([g + 11"K1(x, X))
is a multiplicative translate (by a point of G, (F)) of
[g + 1]*Cancel(# (all char.’s of order dividing g + 1; x, X)),

and, when ¢ is odd,
FT([(g + 1)/21"Kl(x2))

is a multiplicative translate (by a point of G, (IF,)) of
[(g + 1)/2]*Cancel(H (all char.’s of order dividing (g + 1)/2; x2)).

When g is even, the groups PGL(2, q), PSL(2, ¢), and SL(2, ¢) all coincide,
and the pullback by [¢ + 1]* can only shrink Ggeom t0 a normal subgroup of
itself of index dividing ¢ + 1. But for ¢ > 4, PGL(2, ¢g) is simple, of order

(g —Dqlg+1)>q+1
When ¢ is odd, then already in the first case
[2]*Cancel(# (all char.’s of order dividing ¢ + 1; x, %))
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has PSL(2, ¢) as its Ggeom, and its further pullback by [(¢ + 1)/2] can only
shrink Ggeom to a normal subgroup of PSL(2, g) of index dividing (¢ + 1)/2.
But for ¢ > 3, PSL(2, ¢) is simple, of order (¢ — 1)q(¢ +1)/2 > (g +1)/2.In
the second case, we know that

Cancel(# (all char.’s of order dividing (g + 1)/2; x2))

has Ggeom = PSL(2, ¢), and just as above the pullback by [(g +1)/2] can shrink
it no more.

It remains to explain, in (6), why replacing ¥ by ¥, : x — ¥ (ax) with
a € F; a non-square provides the other representation of dimension equal to
whichever of (¢ &£ 1)/2 is odd. For this, we may suppose v is a character of IF,.

Suppose first that g is not a square, i.e., that g is an odd power of p.
Then we may take for a a non-square in IF;. In this case, the trace
function using ¥, will be the Galois conjugate, by the non-trivial element of
Gal(Q(v/(—=1)P=D/2p)/Q) of the trace function using 1. One knows that this
Galois conjugation interchanges the two representations of dimension equal to
whichever of (¢ = 1)/2 is odd.

Suppose now that g is a square. Then (¢ + 1)/2 is odd, and both
representations of dimension (¢ + 1)/2 have Z-valued trace functions, so
Galois conjugation is not available. But recall that the two representations of
this dimension are given by the local systems

A = H(all char.’s of order dividing (g + 1)/2; x2)

and [x — —x]*A. Because (g + 1)/2 is odd, the two pullbacks [(g + 1)/2]* and
[x = —x]* commute with each other, i.e.,

(—x)@+D/2 = _y(a+D/2,

Consider now the local systems
K :=FTy (Lyyx) ® Lyxatny) = [(g + 1)/2]"A

and

Ka :=FTy, (Ly,0) ® Ewa(x(qﬂ)p)).
Over extension fields k/IF, in which a is a square, the trace function of K is
given by

t =Y @yt 4,

xek>

The trace function of IC, is given by

t =3 @Y @2+ rax) =

xek>

Downloaded from https://www.cambridge.org/core. IP address: 71.188.98.234, on 01 Aug 2018 at 18:11:27, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/50025579318000268


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579318000268
https://www.cambridge.org/core
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(making the substitution x > x /a, which turns ax@+1/2 into —x@+1/2)

== @Y (x4 =

xek*

(making the substitution x +— —x)

== 0@YET2 ),

xek*

which is the trace function of
[t = —t"[(g + D/2T" A =[(g + D /21" [x = —x]" A,

the pullback by [(¢ + 1)/2] of the other representation of the same
dimension. (]

§16. Transition from PSL(2, q) to SL(2, q). In this section, we return to our
focus on the local systems

g(]an W, ]lv (61 + 1)/2) and g(Fq’ W7 X2 (6] + 1)/2)

on Al/ IF,. We begin by applying the relevant result of the previous section.

THEOREM 16.1. Suppose q > 3. Then we have the following results.
(1) Ifqis 1 mod 4, the local system G(Fy, ¥, x2, (g + 1)/2) has

Ggeom = Guith = PSL(2, q)

in one of the irreducible representations of PSL(2,q) of dimension

(g + 1)/2. If we replace by ¥, for a € ]qu a non-square, we get the

other irreducible representations of PSL(2, q) of dimension (g + 1)/2.
(2) Ifqis 3 mod 4, the local system G(Fy, ¥, 1, (g + 1)/2) has

Ggeom = Gaith = PSL(2, q)

in one of the irreducible representations of PSL(2, q) of dimension (g —
1)/2. If we replace by ¥, for a € IF; a non-square, we get the other
irreducible representations of PSL(2, q) of dimension (g — 1) /2.

Proof. The statements about G geom Were proven in Theorem 15.3, parts (4)
and (5), as are the statements about the effect on Ggeom Of replacing v by
Y. What remains to show is that the scaling factor «, in the statement of
Theorem 15.3 is the same scaling factor used in defining G(F,, ¥, 1, (¢ +1)/2)
and G(F,, ¥, x2, (g+1)/2). In other words, we know that, in each of (1) and (2),
there is a unique scalar o such that G ® %€ has Ggeom = Garith = PSL(2, q).
What we must show is that in each case that scalar is 1.
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We begin with case (1). Here G gith for G lies in SO((g + 1)/2, Qp), as does
Gaith = PSL(2, q) for G ® «9¢¢ in either of its irreducible representations of
dimension (g + 1)/2. Therefore the scalar « itself lies in SO((g +1)/2, Q). But
as (g + 1)/2 is odd in this case, the only such scalar is 1.

In case (2), G aritn for G lies in SL((g — 1)/2, Qp), as does G aritn = PSL(2, q)
for G ® a9 in one of its irreducible representations of dimension (g — 1)/2.
Therefore the scalar « itself lies in SL((¢ + 1)/2, @). The only such scalars
are roots of unity of order dividing the odd integer (¢ — 1)/2. The only scalar
in (the image of) Gt = PSL(2, ¢) for G ® a9 (in either of the irreducible
representations of dimension (¢ — 1)/2 of PSL(2, ¢)) is 1. Therefore « lies in
the image of Gy, for G.

Because ¢ is 3 mod 4, g is an odd power of a prime p which is 3 mod 4. The
representation for G has its character with values in Q(y/— p), so the only scalars
in the image of G 4im for G are roots of unity in this field. If p > 5, the only roots
of unity in this field are 1. Of these, only 1 has order dividing the odd integer
(g — 1)/2.If p = 3, the roots of unity in this field are ug. For ¢ = 3%+! (with
k > 1 because g > 3 by hypothesis), we have ged(6, (¢ — 1)/2) = 1. 0

The situation now is that for each odd ¢ > 3, we have proven the SL(2, ¢)
conjecture for whichever of the two local systems

g(an ‘ﬁ,]l’(q + 1)/2) and g(]qu w’ X27 (C]"f' 1)/2)

has odd rank. However, there is a simple relation between these two local
systems, which will, in the next section, allow us to prove the SL(2, ¢) conjecture
for the one of even rank. We state this relation in the following two theorems.
The proof of the second is due to Ron Evans, cf. [6]. The referee kindly explained
to us how, by making use of a key idea Evans introduced in his proof, and
by thinking systematically about quadratic polynomials (!), we could unify and
simplify the original proofs of these theorems, and that is the method we employ
below.

THEOREM 16.2. Let q be odd. Suppose q is =1 mod 8, i.e., that 2 is a square
inF ;. Then for any square a € Fg, there exists an isomorphism of local systems
on G, /F,

Sym*(G(F,, ¥a, 1, (g + 1)/2)) = AX(G(F,, ¥, x2, (g + 1)/2)).

THEOREM 16.3 (Evans). Let g be odd. Suppose 2 is not a square in F;.

Then for any non-square a € F, there exists an isomorphism of local systems
on G, /F,

Sym*(G(Fy, ¥a, 1, (g + 1)/2)) = A*(G(Fy, ¥, x2, (¢ + 1)/2)).

Remark 16.4. The formulation of the above theorems is motivated by
the following facts. The group SL(2,¢q), ¢ > 3 odd, has two irreducible
representations of dimension (¢ — 1)/2, Small; and Small,, and two irreducible

Downloaded from https://www.cambridge.org/core. IP address: 71.188.98.234, on 01 Aug 2018 at 18:11:27, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/50025579318000268


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579318000268
https://www.cambridge.org/core
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representations of dimension (¢ + 1)/2, Large; and Large,. They can be
numbered so that on non-trivial unipotent elements g € SL(2, ¢), we have

Trace(Small; (g)) = —Trace(Large,(g)),
Trace(Small, (g)) = —Trace(Large,(g)).

With this numbering, it is easy to see from the character table that there exist
isomorphisms of representations

Sym?(Small;) = A?(Large;)

for i = 1 and for i = 2. Moreover, if 2 is a square in IFZ;, so that squaring maps
each of the two unipotent conjugacy classes to itself (rather than to the other
one), then there exist isomorphisms of representations

Symz(Small,-) = Az(Largej)

for any choices of i, j in {1,2}. In all these cases, the isomorphism exists
(only) because the characters coincide. A beautiful generalization of this result
to Sp(2n, gq) is due to Guralnick ef al [13].

Proof of Theorem 16.2. Let us recall the statement. Suppose ¢ is £1 mod 8,
and a € k> is a square. Then there exists an isomorphism of local systems on

Gm/]Fq
Sym*(G(Fy, ¥a, 1, (g +1)/2)) = A*(G(Fy, ¥, x2, (g + 1)/2)).

Proof. Because both inputs are irreducible, their A2 and Sym2 are
semisimple, so by Chebotarev it suffices to show that both sides have the same
trace function. We first reduce to the case a = 1. Because a € Fj is a square,
for any non-trivial additive character of I, and for any finite extension k /I, we
have the identity

Z Y (ax T2 arx) = Z U (x@D2 1y

xek xek

simply use the fact that a = a‘?T1D/2 and make the substitution x — x/a.
Thus & is a finite extension of Fy, and k> /k is its quadratic extension. Let us
denote

Gsm == (GFy, ¥, 1, (¢ + 1)/2)), Gig := Gy, ¥, x2, (g + 1)/2).
Then for t € k,
2 % Trace(Frobk,,|Sym2(gsm)) = (Trace(Frobk,,|gsm))2+Trace(Fr0bk2,;Igsm),

2 x Trace(Froby ;| A?(Gig)) = (Trace(Froby ;|Gie))? — Trace(Froby, (|Gie).
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The local systems Gy, and G have the same twisting factor 8 = —g(¥_2, x2)
in their definitions, so it suffices to prove this equality with Ggp, replaced by

Fsm = FTy (ﬁw(x(q+1)/2))
and with G, replaced by
Fig = FTy (Lo © Ly arn)-

Thus we must show that

2
(—Z Yr (x4TD2 4 rx)) + (—Z i, (x4FD2 4 rx))

x€k x€ky

2
= (—Z X2k ()Y (x T2 4 zx))

xek
- <_Z X2y () Yy (x OTD/2 4 tx)).
xeky
Let us write
ni=(q+1)/2.
Expanding out the squares, this alleged identity has the form

A =B,
with

A=) @Y i +)
(x,y)€kxk

— > n(Tracey, /5 (x") + t Tracer, /k (X)),

xEkz

B:= Y x4y +1(x + )
(x,y)ekxk

+ Z X2,k (Normy, / (x)) Vi (Tracekz/k(x”) + t Trace, /x (x)).

x€ky

We break these sums up as follows. For each monic quadratic polynomial
X*—bX +c

in k[ X], its two roots are either:

(1) arepeated root (x, x) € k x k, when b2 —4c =0;
(2) apairof roots (x, y) € k x k with x # y, when b? — 4c is a non-zero square
ink;
(3) a pair of Gal(ky/ k)-conjugate roots u # u with u € kp \ k, when b? —4c
is a non-zero non-square in k.
View the coefficients b, c of X?> — bX + ¢ as the elementary symmetric
functions of its roots. The nth Newton symmetric function N, (b, c) is, in cases
(1) and (2), x* + y", and in case (3) it is Tracei,/x(u") = Tracey, r(u").
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Similarly, ¢ = x2 in case (1), ¢ = xy in case (2), and ¢ = Normy, /(1) =

Normy, /¢ (u) in case (3), and b = 2x in case (1), b = xy in case (2), and
b = Tracey, (u) = Tracey, (1) in case (3).

On the A side, the (x, x) terms in k X k in the first sum match identically the
terms x € kp with x € k. And the quadratic character xo, «(b* —4c) is 1 if we are
in case (2), and it is —1 if we are in case (3). So

A=2x > X2,k (b* — 4¢) Y (Ny (b, ¢) + tb)
(b,c)ekxk,b?#4c

=2x Y xau® — 40P (Na(b. ©) +1b),
(b,c)ekxk

the last equality because we add back terms with x2 ; (b? — 4¢) = 0.
On the B side, the (x, x) terms in k X k match identically the terms x € k>
with x € k. Each such singleton term occurs twice in B, so we find that

B=2x Y x2k(©)Yx(Na(b,c) +1b).
(b,c)ekxk

Our next step is to show that the sum of the » = 0 terms in A is equal to the
sum of the b = 0 terms in B, i.e., to show that

3 X2k (4P (Na(0.€) = Y x2.4 (Y (N (0, ).

cek cek

The two roots of X2 + ¢ are negatives of each other.
If n is odd the sum of their nth powers vanishes; N, (0, ¢) = 0 if n is odd. So
in the n odd case, the equality to prove is that

Y xan(=4e) =Y xax(o),

cek cek

which holds because both sides vanish.
If 1 is even, then for each root & of X2+c, we have o2 = —c, soa” = (—c)”/z,
and N, (0, ¢) = 2(—c)"/%. Thus the equality to prove in the n even case is

D xaa(=4Y (=) =) xak(@Pr2(=c)"?).

cek cek

If —1 is a square in k, the equality obviously holds. If —1 is a non-square in &,
then both sides vanish. Indeed, —1 must then be a non-square in [, hence ¢ is
3 mod 4. But g is £1 mod 8, so in fact ¢ is 7 mod 8§, hence n/2 = (g + 1)/4 is
even. The first side of the desired equality is

n/2 n/2
E X2k (—40) Y (2(—c)"?) = E X2k (40) Y (2(0)"?),
cek cek
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simply by the substitution ¢ — —c, while, because n/2 is even, it is also equal to
Y k(4P (=c)"?) =Y xaa (=400 2(0)"?),
cek cek

hence the first side is minus itself, so vanishes. Same for the second side.
Having taken the case of the b = 0 terms, we are left with proving the
following equality;

Y k@4 (N O+ = > xak (O W(Na(b, ) +1b).

(b,c)ek* xk (b,c)ek* xk

Interlude: the miracle lemma of Evans
Consider a quadratic polynomial X> — bX + ¢, with two roots a, 8, and
b = a + B invertible. Then

Nn(b,C)=Ot"+ﬂ”=<b+(‘;_:3)> +<b—(o£_13))

B . Ol—,B n _O(—ﬂ n
S (1+952) 4 (1-52)

The polynomial

(1+X)"+ (1 - X)" € Fy[X]

is visibly invariant under X — —X, so is in fact a polynomial in X2. Thus there
is a unique polynomial f,(X) € F;[X] such that

i XH=104+X)"+1—X)".

Referring back to the above identity for N, (b, ¢) when b is invertible, we get

— B)? b* — 4
Nu(b, ) = (b/2)" fn<( ﬁ)) (b/2)" fn( C)

— (b)) 1 4c
= (/D" fa| 1 - )
Using this identity, the equality we need to prove is

4
> xou®? - 4c>wk((b/2>"fn< b§)+rb>

(b,c)ek* xk
N 4c
= D k@U@ ful 1= 55 ) +1b).
(b,c)ek* xk
For this, it suffices to show that for each fixed value of b € k™, we have

4
Zm<b2—4c)wk<<b/2> fn< bj))

cek

4
=3 xZ,k<c)1/fk((b/2>"fn (1 - b—j))

cek
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Equivalently, we must show that for each b € k™, we have

Zm(l - ;ij)wk((b/2>"fn(1 - 2—5))

cek

—szk<b2)¢k((b/2) fn( 20))

cek

LEMMA 16.5 (Evans). Let p be an odd prime, I, a finite extension of I,
= (g + /2, and f(X) := fu(X) € Fy[X] the unique polynomial such that

fX=04+X)"+0-X)"
Then we have the identity
Fad=X)=xr,2)f(X).

Proof. The polynomial f(X) has degree [n/2].

We first claim that f (X )2 = f-X )2. Each of these polynomials has degree
2[n/2] < n < g, so it suffices to show that f()c)2 fa — x)? for every x € .
Forx =0, f(0) = f(0) =2and f(1) = f(1?) =2" = x2.5,(2)2 (because

= (g+1)/2). So we do have f(x)*> = f(1 —x)? for x either O or 1. For x # 0,
Choose a square root of x in [F >, call it /x. Then

f) = fF(VOH =0 +V/0)"+ 1= Jx)"
Thus for x # 0, we have

F)?=2(1— )"+ (1 + V0T 4+ (1 — J/x)7t!
=2(1 —x)" + (1 4+ VxDH A+ V0 + (1 = /a1 = Vx)
=2(1 —x)" +2+2x".

This expression is visibly invariant under x +— 1 — x. Thus we have the
polynomial identity f(X)? = f(1—X)? in F,[X]. Therefore f(X) = ef (1 —X)
for some € € {£1}. Evaluating at X = 0, as we have done above, we see that the
sign is x2.F, (2). O

With this key lemma at hand, the asserted identity, that for b € k™ we have

Zm< ——)wk((b/m"fn( 22))

cek

= Zm(bz)wk(a)/m fn< 22))

cek

is obvious from the substitution ¢ — b%/4 — ¢, i.e., 4c/b* — 1 — 4c/b* when 2
is a square in k. This concludes the proof of Theorem 16.2. (]
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Proof of Theorem 16.3. Although Q(Fq, Y4, 1, n) has a quadratic Gauss sum
clearing factor 8 which differs by a sign from that of G(F,, ¥, 1, n) when a is
a non-square in F,, only its square enters in Symz. So just as in the proof of
Theorem 16.2, we may ignore the clearing factors.

Whena € F7 is a non-square, for any non-trivial additive character of F; and
for any finite extension k/IF,, we have the identity

S Y@ 2 farxy = 3y (—x @2 4 g,

xek x€k

simply use the fact that ¢ = —a?*t1/2 and make the substitution x > x /a.
Exactly as in the start of the proof of Theorem 16.2, we must prove an equality
of the form A = B, with

A=2x Y X2k —4)Yr(=Ny(b, ¢) +tb),
(b,c)ekxk

B=2x Y x2k(©)Yx(Na(b.c)+1b).
(b,c)ekxk

We first must show that the sum of the » = 0 terms in A is equal to that sum

in B, i.e., that
Y X2k (4 YR(=NR (0, ) = D 2k ()Yr (N, (0, ©)).
cek cek

If n is odd, then N, (0, ¢) = 0, and both sides vanish.

If n = (g + 1)/2 is even, then g is 3 mod 4. But 2 is a non-square in F,,
so g is £3 mod 8, hence ¢ is 3 mod 8, and thus n/2 = (¢ + 1)/4 is odd. Thus
Ny (0, ¢) = (—¢)"? = —¢™/2, and the asserted equality is

Y xax(=4Y(?) = Y xax(@Pr(—c"?).

cek cek

Because n/2 is odd, the substitution ¢ — —c interchanges the two sides.
It remains to treat the case when b is invertible. In this case, just as in the proof
of Theorem 16.2, we reduce to showing that for each fixed b € k>, we have

Zsz(l - ;‘—Z)wk(—w/z)"fn(l - 2—2))

cek

- Zm,(i—ﬁ) W ((bm"fn(l - 2—2))

cek

Once again, the substitution ¢ — b%/4 — ¢, ie., 4c/b*> +— 1 — 4c/b?
interchanges the two sides, because when 2 is a non-square in [F, we have
fa(dc/b?) = — £, (1 — 4c/b?). This concludes the proof of Theorem 16.3.  [J

For ease of reference, we combine the statements of Theorems 16.2 and 16.3.
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THEOREM 16.6 (Joint with Evans). Let g be odd. For any non-trivial additive
character ¥ of ¥y, with ¥ (x) := ¥ (2x), there exists an isomorphism of local
systems on G, /I,

Sym*(G(Fy, ¥2, 1, (g + 1)/2)) = A2 (G([Fy, ¥, x2. (q + 1)/2)).
§17. The situation for SL(2, q).

THEOREM 17.1. Suppose q > 3. Then we have the following results.
(1) Ifqis 1 mod 4, the local system G(Fy, ¥, 1, (g + 1)/2) has

Ggeom = Gaiith = SL(2, q)

in one of the irreducible representations of SL(2, q) of dimension (g—1)/2.
Ifwe replace r by Y, fora € F; a non-square, we get the other irreducible
representations of SL(2, q) of dimension (g — 1)/2.

(2) Ifqis 3 mod 4, the local system G(Fy, ¥, x2, (g + 1)/2) has

Ggeom = Gaith = SL(2, q)

in one of the irreducible representations of SL(2, q) of dimension (g+1) /2.
Ifwe replace W by Y, fora € F 21( a non-square, we get the other irreducible
representations of SL(2, q) of dimension (q + 1)/2.

Proof. When ¢ is 1 mod 4, G(F,, ¥, x2, (¢ + 1)/2) has odd rank (¢ + 1)/2
and G(Fy, ¥, 1, (g + 1)/2) have even rank (¢ — 1)/2. When ¢ is 3 mod 4,

G(Fq, ¥2. 1, (¢ +1)/2) has odd rank (g —1)/2 and G(Fy, ¥, x2, (¢ +1)/2) has
even rank (g + 1)/2. Let us denote these local systems

Godd and  Geven

respectively.
We have proven that Goqq has Ggeom = Gurith = PSL(2, ¢g) for all odd g > 3.
Therefore we have
Ggeom = Guith = PSL(2, q)

for
A%(Goqq) when g is 1 mod 4,

and for
Sym2 (Goaq) Wwhen g is 3 mod 4.

We have proven the existence of isomorphisms

A% (Godd) = Sym?(Geven) Wwhen ¢ is 1 mod 4,
Sym?(Godd) = A?(Geven) When ¢ is 3 mod 4.

Therefore we know that

Ggeom = Garith = PSL(2, q)
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for
Symz(geven) when ¢ is 1 mod 4,

and for
A*(Geven) When ¢ is 3 mod 4.

Passing from Geyen to either A%(Geyen) or to Sym(Geyen) either leaves Ggeom
(respectively Garm) unchanged, or it divides that group by #1. These groups
cannot remain unchanged, because PSL(2,g) does not have an irreducible
representation of this degree. Therefore both Ggeom and Gith are double covers
of PSL(2, g). Neither can be the product of =1 with PSL(2, ¢), again because
PSL(2, g) does not have an irreducible representation of this degree. Therefore
each is the Schur double cover of PSL(2, ¢), which is SL(2, g). O

For ease of later reference, we combine the statements of this last theorem
and of Theorem 16.1.

THEOREM 17.2. Suppose g > 3 is odd. In the notation Gogq and Geyen of the
proof of the theorem above, we have the following results:

(1) forevery odd q > 3, Goad has G aith = Ggeom = PSL(2, g);
(2) forevery odd q > 3, Geven has G asith = Ggeom = SL(2, q).

§18. Representations of PU(3, q), d’apres Gross. Gross has constructed a
PU(3, g)-torsor T on G, /F 2 with the following properties. On 7, the inertia
and wild inertia groups at 0 and oo are given explicitly in terms of the Borel B,
its unipotent radical R, the quasisplit torus Tgspi, cyclic of order g*> —1, and the
Coxeter torus Tey, cyclic of order g2 — g 4+ 1. We have

Ioo = B> Py = Ry, Ioo/ Po = Tyspl,
Iy = Texe, POZ{I}-

[Over finite fields, there is only one isomorphism class of non-degenerate
Hermitian form in each dimension, cf. [12, Theorem 10.3]. The complete
Deligne-Lusztig curve for PU(3, ¢) can therefore be seen either as the Hermitian
curve

XY+ X1y = 791,

or as the Fermat curve of degree g + 1,

X(]+] + Yq-H + Zq-H — O

The action of PU(3, ¢) on the Fermat curve is perhaps most visible. The quotient
is Pl/qu, and the torsor 7 is the restriction to G, of the projection to IP’I/Iqu
of the Fermat curve onto its quotient.]

When ¢ is odd, the group R, is a Heisenberg group of exponent p and order
g3, whose center Z(R,), which is also its derived group, is non-canonically the
additive group of F,. When p is odd, one knows (Stone—von Neumann theorem,
cf. [9]) that the irreducible representations of R, are as follows.
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(1) Those trivial on Z(R,); the quotient R,/ Z(R,,) is abelian of order g2, and
hence has ¢? linear characters.

(2) For each non-trivial character v of Z(R,), there is an irreducible
representation Hy of dimension g having 1 as its central character. The
character of Hy vanishes on R, \ Z(R,), and is equal to g on Z(R,).

In the Appendix A, Tiep shows (Theorem A.2) that for any prime power g, the
irreducible representations of R, are as described in (1) and (2) above.

As I learned from Dick Gross, the action of B/R,, on Z(R,) by conjugation
cyclically permutes the ¢ — 1 non-trivial characters of Z(R,). Indeed, in the
matrix picture given by Ennola [5, bottom of p. 30], B is the subgroup ¢ = 1,
R, is the subgroup a = ¢ = 1, its center Z(R,,) is the further subgroup b =
e = 0, with parameter d, the lowermost left corner, which is any element of
F,2 with Tracezpq2 JF,(d) = 0. The quotient B/R, = Tgspi is the IF;Z of diagonal

matrices Diag(a, 1, 1/a%),a € ]F;z, which acts on Z(R,) by multiplication by
1/ Norm]Fq2 JF, (@).

LEMMA 18.1. Suppose q > 3. The group PU(3, q) has gcd(3,q + 1)
irreducible representations of dimension q(q—1), and it has g+1—gcd(3, g + 1)
irreducible representations of dimension 1 + q(q — 1).

Proof. This is most easily seen from the character table of U (3, ¢) due to

Ennola [5, pp. 29-31]. In that table, the irreducible representations of dimension
g(q — 1) are denoted X;tl
center of U (3, ¢g) are those whose parameter ¢ satisfies 3t = 0 in Z/(g + 1)Z.
The irreducible representations of dimension 1 + ¢ (g — 1) are denoted X;g’f)q e
with ¢, u mod g + 1 and ¢ # u. Those trivial on the center of U (3, ¢g) are those

;;fzﬁ with 3u # 0 mod ¢ + 1. O

, with ¢ an integer mod g + 1; those trivial on the

of the form y

Remark 18.2. When g = 2, the group PU(3,2) has ged(qg + 1,3) = 3
irreducible representations of dimension g(¢ — 1) = 2, but rather than having
q—+1—gcd(3, g+ 1) = O irreducible representations of dimension 14+¢g(g—1) =
3, it has one such. This “exotic” one is the representation labeled x ((;f i';zqz_q )
in Ennola’s table, with (¢, u, v) taken to be (1, 2, 3).

THEOREM 18.3 (Gross). We have the following results.

(1) In each of the irreducible representations of PU(3,q) of dimension
q(g — 1), the action of R, is by the direct sum

D H

non-triv. ¥

of the (q — 1) irreducible representations of R, with non-trivial central
character. These g — 1 summands are cyclically permuted by a generator
of B/R, = qupl-
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(2) In each of the irreducible representations of PU(3,q) of dimension
q(q — 1), the group Tcx acts by

Reg_p’

with Reg the regular representation and p a character of order dividing
g + 1 having p3 trivial. [Unless ¢ = 2 mod 3, the only such p is 1. If ¢ =
2 mod 3, then 3|q*> — q + 1, and there are 3 such p.]

(3) Suppose q # 2. In each of the irreducible representations of PU(3, q)
of dimension 1 + q(q — 1), the action of Ry, is by the direct sum

1o @ Hy.

non-triv. ¥

The q—1 summands Hy, are cyclically permuted by a generator of B/ R, =
Tyspi- The group B /Ry acts on the line of Ry-invariants by a character p
of order dividing q + 1 with p3 non-trivial.

(4) Suppose q # 2. In each of the irreducible representations of PU(3, q)
of dimension 1+q (g — 1), the group Tex acts by the regular representation.

Proof. (1) In the tables of Ennola, non-trivial elements of the center Z(R,,)
lie in the conjugacy class CéqH), and these elements all have trace —¢q in each
of the irreducible representations of PU(3, ¢) of dimension g(g — 1). Elements
of R,\Z(R,) lie in the conjugacy class ngH), and have trace 0 in each of these
representations. In other words, the character of Z(R,) is equal to g times the
sum of the g — 1 non-trivial linear characters of Z(R,,), and the character of R, is
equal to the sum of the characters of the g — 1 distinct g-dimensional irreducible
representations Hy, of R,. Because the non-trivial characters of Z(R,) are
cyclically permuted by a generator of B/R, = Tgysp, the summands Hy must
themselves be cyclically permuted by a generator of B/R;, = Tyspi.

(2) A generator of the group Ty is the image in PU(3, ¢) of an element in the
conjugacy class Cél). Its kth power, for | < k < g% — ¢ + 1, lies in the image in
()
a’—q
q + U’stroot of unity. As 3t = 0 mod ¢ + 1, the assertion follows.

(3) Again looking at the tables of Ennola, the non-trivial elements of Z(R,)
all have trace 1 — ¢ in any of the irreducible representations of PU(3, ¢) of
dimension 1 + g(¢ — 1), and the elements of R, \ Z(R,) all have trace 1 in any

of these representations. Therefore the representation of Ry, is

1o P Hy.

non-triv. ¥

PU(3, g) of the conjugacy class Cék). Its trace in x is —e’k, € being a chosen

Because R, is a normal subgroup of B, B/R, acts on the line of R,-invariants
by a linear character, call it p. A generator of B/R, = Tysp1 permutes cyclically
the Hy, so it has trace zero on Pyon.yiy, y Hy» and hence the value of p on a
generator y of Tysp is the trace of y in the representation. A generator of Tysp) is
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the image in PU(3, ¢) of an element in the conjugacy class C§q+] ’ 1), and such an
;;3;;’3. As 3u # 0mod g + 1, the assertion follows.

(4) Exactly as in part (2), it suffices now to remark that the non-trivial
elements of Ty lie in the (images in PU(3, g) of) conjugacy classes Cék) , for
1 <k < g*— g+ 1, and that all these classes have trace zero in any of the
irreducible representations of dimension 1 4+ g(g — 1). O

element has trace € 7% in

COROLLARY 18.4 (Gross). The pushout of the Gross PU(3, q)-torsor on
G /]qu by any of the irreducible representations of PUQ3, q) of dimension
either q(q — 1) or, if ¢ # 2, of dimension 1 + q(q — 1) is tame at 0 and has
Swans, = 1.

Proof. In all cases, the tameness at 0 is obvious, since Iy acts through Ti, a
group of order prime to p.

The irreducible representation Xq(ZJ_r;) is the only one of the irreducible
representations of dimension g(¢ — 1) whose character is R-valued, so is the
only one of them which is self dual. Therefore it is the irreducible unipotent
cuspidal representation of dimension g(g — 1), and for this representation the
statement is given in [10, Corollary part (c), top of p. 2537].

For V the pushout by any of the other representations, its L-function is known
to be the constant 1, of degree 0 [10, Corollary part (c), bottom of p. 2536], and
we have the formula [10, middle of p. 2536]

Swang, (V) = degree(L) + dim(V ) + dim(V ).

[This is the Euler—Poincaré formula, applied to the geometrically irreducible and
non-constant lisse sheaf V on G, /Fg4, the inclusion

j:G, C P!,
the short exact sequence of sheaves on P!,
0= jiV—jV->Vhes@Pv>ese— 0.
and the piece of the long exact cohomology sequence
0— Vvhgvi - H\G,/F,, V) > H'(P'/F,, j,V) = 0.

Because V is tame at 0, the middle term has dimension Swane, (V), and the last
term has dimension equal to the degree of the L function.]

For the other, if any, irreducible representations of dimension g(q — 1), Iy
acts as Reg — p with p non-trivial, so has a one-dimensional space of invariants,
while the /.-representation is totally wild.

For the irreducible representations of dimension 1 4+ g(g — 1), we suppose
q # 2. Then Iy acts as the regular representation, so has a one-dimensional
space of invariants. The Iy -representation is the direct sum of a totally wild
representation and a tame line on which /., /P acts through a non-trivial
character (one of order dividing g + 1 whose cube is non-trivial). So again in
this case there are no non-zero I-invariants. J
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It is known [17, 8.5.3] that a geometrically irreducible local system
on Gy, /F,» which is tame at 0 and has Swan,, = 1 is, geometrically, a
hypergeometric sheaf, and is determined [17, 8.5.6(2)] by the semisimplifications
of its Ip and I, representations. So we get the following, in which the subscript
desc denotes the canonical descent to Gy, /F 2.

COROLLARY 18.5. We have the following results.

(1) There are gcd(3, g+1) irreducible representations of PU(3, q) of dimension
q(qg — 1). Their pushouts of the Gross torsor are, geometrically, unique
multiplicative translates of the Kloosterman sheaves

Klgesc (!, ¥; all chars of order dividing q2 —q + 1 save p),

with p of order dividing g + 1 and having p> = 1.

(2) Suppose q # 2. There are g +1—gcd(3, g + 1) irreducible representations
of PU3, q) of dimension 1 + q(q — 1). Their pushouts of the Gross torsor
are, geometrically, unique multiplicative translates of the hypergeometric

sheaves of type (1 +q(g — 1), 1)
Haesc(!, ¥; all char's of order dividing g> — q + 1; p),
with p a character of order dividing q + 1 with p> non-trivial.

Remark 18.6. When ¢ is not 2 mod 3, then the only p in part (1) is 1, and all
non-trivial p occur in (2). When g is 2 mod 3, then 3 also divides ¢g> — g + 1,
and there are three p in part (1) and g + 1 — 3 = g — 2p in part (2).

If we now pay attention to rationality questions, we get the following.

COROLLARY 18.7. We have the following results.

(1)  For each character p of order dividing g + 1 and having p> = 1, there
exists ap € Gy (Fy2) and o) € ng such that the corresponding pushout
of the Gross torsor is arithmetically isomorphic to

Hy =[x = apx].

x Klgesc (!, V; all char's of order dividing q2 —q+ 1save p) ® aﬁeg.

(2) Suppose q # 2. For each character p of order dividing q + 1 and having
p> non-trivial, there exists a, € Gy (qu) and o, € ng such that the
corresponding pushout of the Gross torsor is arithmetically isomorphic to

Hy =[x — apx].
X Haese(!, ¥; all char's of order dividing q2 —g+1Lp® ageg.
(3) These local systems H, in parts (1) and (2) have Ggeom = Garith =
the image of PU(3, q) in the corresponding representation.
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§19. Passage to PSU(3, q). In general, PSU(3, ¢) is a subgroup of PU(3, ¢)
and a quotient of SU(3, g). When gcd(3, ¢ + 1) = 1, all these groups coincide.
When 3 divides g + 1, then PSU(3, ¢) has index 3 in PU(3, ¢g), and SU(3, ¢) has
a center 3 of order 3. In this latter case (which of course does not occur when ¢
is a power of 3), restricting one of the irreducible representations of the previous
section to PSU(3, ¢) is achieved by the cubic pullback [r — £3]* of the pushout
local system, cf. [10, bottom of p. 2537], just as in the discussion of pullback
from PGL(2, ¢g) to PSL(2, q), where it was the pullback by squaring of the local
system. From the identity

@ —qt+l=(@q-2@q+D+3

we see that 3 divides ¢ + 1 if and only if it divides g> — g + 1. So in all cases, the

[t — 14 =g +11* pullback of any of the local systems H,, of the last section are
then local systems with Ggeom = Gurith = PSU(3, ¢). Taking into account [17,
9.3.2], we get the following theorems.

THEOREM 19.1. Suppose that 3 does not divide g + 1. Then the local system

G:=GF,e, ¥, 1,(q> +1)/(q+1)

on Gy, /qu has G geom = SU(3, q). When pulled back to G, /IFq4, it has G geom =
Gaith = SUQ@3, q) (= PSU(3, q)). For each of the q non-trivial characters p of
order dividing q + 1, the local system

G:=GFp.¥. 0 (> + 1)/(g+1)
on Gm/qu has Ggeom = Garith = SU(3, q) (= PSU(3, ¢)).

Proof. By [17, 9.3.2], for each character p of order dividing g + 1, the [t —

tqz_q“]* pullback of H, is geometrically isomorphic to a Gy, (F2)-translate
(cf. Lemma 14.2) of

G:=GFp, ¥, 07, (@ + 1/(g+1).

Therefore there exists B, € @X such that this pullback is arithmetically

isomorphic to a G, (qu)—translate of G® ﬂgeg. As translation by a rational point

does not affect either Garith 0r Ggeom, the local system

G®pE

itself has Ggeom = Garith = SU(3, ¢) (= PSU(3, ¢)) and has the same field of
traces as [t — tqz’qﬂ]*’Hp.

It suffices to show B, = 1 when p is non-trivial, and that gy € 1.

As one sees from Ennola’s character table, the character of ”Hp takes values
in the field Q(p), the field generated over Q by the values of p. The character of

G:=GF,.¥.p . (> + /(g +1)
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also takes values in this field. Therefore the scalar 8, must lie in Q(p). Both G
and H, have their Gam lying in Sp(g(g — 1), Q) if p = 1 (respectively in
SL(g%> — g + 1, Qy) if p? is non-trivial). Therefore B, is aroot of unity. The only
roots of unity in Q(p) C Q(ug+1) lie in pog41)-

If p is non-trivial, B, lies in SL(g> — ¢ + 1,Qy), so is a root of unity of
order dividing gcd(2(q + 1),¢*> — g+ 1) = ged(q + 1,¢> — g + 1) = 1 (the
first equality because g — ¢ + 1is odd). If p = 1, By is a root of unity in Q, so
is £1. O

THEOREM 19.2. Suppose that 3 divides q + 1. Then we have the following
results.

(1) For g # 2, the local system
G:=GF,, ¥, 1, (@ + /(g +1)
on Gy /F 2 has Ggeom = PSU3, q), and after pullback 10 Gy, /F 44 it has
Ggeom = Garith = PSU(3, ¢).

For g =2, replace PSU(3, 2) in the above statement by its quotient Qs, the
quaternion group of order 8, which is the image of PSU(3, 2) in its unique
irreducible representation of dimension two.

(2) Ifq is odd, the local system

G:=GFp. V. x2. (@ + 1)/(g + 1)

on Gm/qu has Ggeom = Gaith = PSUQ3, q).
(3) For any non-trivial character p of order dividing (q + 1)/3 whose order is
prime to 3, the local system

G:=GFp. V. p. (@ +1)/(g+1)
on Gy /F 2 has Ggeom = Garith = PSU(3, ).
(4)  For any non-trivial character p of order dividing (q+1) /3, the local system
G :=GFp2, ¥, p, (@ +1)/(g+1)
has G geom = PSU(3, q). After pullback to (Gm/Fqc it has
Ggeom = Garith = PSU(3, q).

Proof. Statement (2) is a special case of (3), but seems worth stating
separately.
Exactly as in the proof of the previous theorem, for each p of order dividing

q + 1, there exists 8, € @X such that for

G:=GF,.¥.p . (¢° + /(g + 1)),
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834 N. M. KATZ

the local system
G ®py"

itself has Ggeom = Garith = SU(3, ¢q) (= PSU(3, ¢)) and has the same field of
traces as [t — t"z_’”l]*?-lp.

(1) In this case of p = 1, both G and gw;‘leg have their G i C Sp(g(g—1),
@). Therefore the scalar 8y lies in Sp(g(g — 1), @), hence is 1.

(2) In this case of p = x2, both G and G ® ﬁiig have their Gam C SO(1 +
q(qg — 1), Qp). Therefore the scalar By, = 1.

(3) If p is non-trivial of order dividing (¢ + 1)/3 and prime to 3, then we can
write p = A3 fora unique non-trivial character A of order dividing (¢ + 1)/3
and prime to 3. Then for

G:=GFp, ¥, p, (@ + 1)/(g+ 1) =GFp, ¥, A7, (> + 1)/(g + 1)

the local system
G®BLE

has Ggeom = Gaith = PSU(3,¢q). The field of traces of G ® ,Bieg lies in
Q(A) = Q(¢y) for d the order of A. The field of traces of G also lies in this

field. Therefore the scalar S5 must lie in Q(&yz). All roots of unity in this field
lie in 4. Both G and G ® ,B?\eg have their G lying in SL(1 + g(g — 1),
Q). Therefore the scalar S, lies in this SL group, so is a root of unity of order
dividing ged(g? — g +1, 2d) = ged(g*> — g +1, d) = 1 (the first equality because
g® — g + 1 is odd, the second equality because d|g + 1 and ged(g® — 1 + 1,
q + 1) = 3 while d is prime to 3).

(4) In this case, write p as A > for some character A of order dividing g + 1.
The same sort of argument only shows that 8, is a root of unity of order dividing

ged(@> = 1+1,¢+1)=3. O

Remark 19.3. In part (1) of both Theorems 19.1 and 19.2, the possibility is
left open that for

G:=GFp. ¥, 1, +1)/(q+1)),

it is G ® (—1)9¢ rather than G on Gm/F 42 which has Gain = PSU(3, q).
Computer experiments suggested that it was indeed G which has G =
PSU(3, ¢). The idea behind the experiments was to exploit the fact that for any
q > 3, the character of the irreducible representation of PSU(3, ¢) of dimension
q (g — 1) takes the value 2, but never takes the value —2. [The reason g = 3 is an
exception is that the value 1 — g is always taken. For ¢ = 3, one can show that G
has the correct G it by checking that over the odd degree extension Fs of Fso,
we have Trace(FrobFab,glg) = 6 (= q(q — 1)), another character value whose
negative does not occur as a character value. The reason ¢ = 2 is an exception is

Downloaded from https://www.cambridge.org/core. IP address: 71.188.98.234, on 01 Aug 2018 at 18:11:27, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/50025579318000268


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579318000268
https://www.cambridge.org/core

RIGID LOCAL SYSTEMS ON A! WITH FINITE MONODROMY 835

that both 2 and —2 occur as traces equally often, and the only other trace attained
is 0.] Therefore to show that G has G i = PSU(3, ¢) for odd ¢ > 3, it sufficed
to exhibit a value 7 € I » at which

Trace(FrobIFq2 +G) =2,

simply because for this ¢, Trace(Froquz, G ® (— 1)de8) = —2_ a value that does
not occur as a character value.

Let us make explicit the simple formula for this trace. Here i is any non-
trivial additive character of F > which comes from F; by composition with the
trace, and ¢ € ]qu.

Trace(Frobr , /1G) = (1/q) D ¥ (x'T47D 4 1),

xEqu

Extensive computer experiments led us to conjecture the following theorem,
whose proof is due to Ron Evans.

THEOREM 19.4 (Evans). We have the following determinations of the trace
when q is odd.

(1) Ifq =2 mod 3, then for t = 0 we have Trace(FroquQ,olg) =2
(2) Ifq =3 mod4, then fort = 1 we have Trace(FroquZ,l |G) = 2.

(3) Ifqg = 1mod 12 and q is a non-square mod 5, then for t = —2 we have
Trace(Froquz,_zlg) =2.

(4) Forany odd q, there exists t € IFy with Trace(Frob]qu’,lg) =2.
(5) Ifqisan odd power of p, there exists t € F, with Trace(Froquz, 1G) = 2.

Proof. Because q is odd, we may view [ > as obtained from [, by adjoining
S = «/Z,
for A € F; anon-square. Thus
F,2 = F,4[d], 3 = 4.
Fort € IF,, we have

q Trace(FrobJqu,zlg)
— Z w(xl"r(I(q_l) _l’_tx)

xEqu
=14 ) yE>?+1x)
erF;z
=1+ > Y ((a + b8)2/(a — bs) + t(a + bs)).

(a,b)eFé,(a,b);é(0,0)
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Break the sum into two pieces, the first with a = 0. We get

=1+ ) Y((b8)*/(—b8) + 1b?)

beFy
+ Y Y@+ b8)*/(a—b8)+1a+bs))
a#0,belF,
=Y W@ —-Db)+ > w(a+b8)*/ (@~ bs)+1(a+bd)).
bel, a#0,belF,

Remember that our ¢ is of the form Y, o Tracquz /F, for Y, a non-trivial
additive character of IF;. The first sum is g, because ¢, b both lie in F; and § has
Trace]}rq2 /R, (8) = 0. Making the change of variable (a, b) — (a, ab), the second
sum becomes

Z V(a(l + b8)2/(1 — b8) + at (1 + bs))

a#0,beF,
= Y Y@l +b8)*+1(1—b*8H]/(1 - bs))
a#0,bel,
[(1 4+ b8)2 4+ t(1 — b282)](1 + bS)
= Z w(“ 252 >
a#0,beF, 1-5%

Expanding out the numerator, this is

XbS+1+1+ (3—1)b%8%
R )

—p2s2
a0,beF, I=0%

with X € Fy. As Tl‘aCG]qu /F,(8) = 0, this is

1+1+ 3 —1)b%s2
Z Wq (Za 1 — b282 :

a#0,belF,

The denominator 1 — b%28% = 1 — b2 A never vanishes for b € IF,, so adding back
the a = 0 terms this sum is

242
I S e

_ H252
a,belF, 1 b=

Recalling that the first sum was ¢, we end up with the formula

1+t+(3—t)b2A)_

q Trace(Froquz,Ag) = Z v, <2a 1= b2A

a,belF,
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- ZZen () (- 7))

beF, aclk,

for t # 3,

Suppose now that ¢+ # —1, 3 is chosen so that ( +1)/(t —3)A is a non-
zero square in [F,. Then there are exactly 2 values of b for which the factor
b — (1 +1) /(t — 3) A vanishes. For each of these, the sum over a gives ¢. For
the other values of b, the sum over a vanishes. So for such a value of t £ —1,3
in F,;, we have

Trace(Frob]quﬂg) = 2.

Because A is a non-square, the requirement is that (1 4 ¢)/(¢ — 3) be a non-
zero non-square. If ¢ = 2 mod 3, then by quadratic reciprocity —3 is a non-
square in Fy, and we take ¢ = 0. This proves (1). If ¢ = 3 mod 4, then —1 is
a non-square in [F,, and we take r = 1, proving (2). If ¢ is a non-square mod
5, then by quadratic reciprocity 5 (and hence 1/5) is non-square in F, and we
take t = —2, proving (3). In general, the fraction (1 4 ¢)/(¢ — 3) assumes g — 2
non-zero values in [y, so for ¢ > 5 at least one of them is a non-square. The
case ¢ = 3 is handled by case (2), where t = 1 “works”. This proves (4). If g is
an odd power of p, the same argument shows that there exists ¢ € I, for which
(t + 1)/(t — 3) is a non-square in IF;, and hence in [F;. This proves (5). O

COROLLARY 19.5. For any odd q, the local system
G:=GF..v. 1, (¢ +1D/(g+1)

on Gm/]qu has
Ggeom = Guaith = PSUG3, q).

§20. Supplement: proof of Pink’s theorem. Let us recall the situation. For g a
power of p, Kubert proved (Theorem 4.1) that

F=FF,, ¥, 1,q+1)
has finite Ggeom.

THEOREM 20.1 (Pink). On Al/Fq4, we have an isomorphism

End(F) = FQ® FY= @ EI//(D[X)-

2
aEFq4,a‘7 =«

Proof. Fix a choice of a € Fa, P —— [Soa € IF 2 if g is even.] We first
construct an isomorphism
F® £1p(ax) =F
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838 N. M. KATZ

on A2 / ]Fq4. The target is the Fourier transform of Ew(( x—a)at1ys SO it is equivalent
to construct an isomorphism

Ly (—ayrtty = Ly xar)
on A?/F 4. For this, we use the identity

- =@ -0 —a)= (! —al)x ~a)
= xIT! —ax? — afx 4 7!
= x4t 4 o€’ x — ax? 4 o4t
= x9 4 [(ax®)? — ax9] 4 a9t

The bracketed term is visibly Artin—Schreir equivalent to zero. The constant
a?t! is also of the form B¢ — B for some B € g4, simply because

Trace]FqUFq (@911 = 0, as one easily checks. [When ¢ is even, a9t! ¢ F,2,
so already Tracqu4 /F 2 () = 0 in this q even case.]
Now we use the fact that End(F) has a direct sum decomposition

End(F) = Endy(F) & Qy,

with Endg(F) the endomorphisms of trace zero.
Using the (inverse of the) isomorphism F ® Ly x) = F constructed above,
we get

End(F) = End(F) ® Ly @x) = (Endo(F) ® Q) ® Ly (ax)

which exhibits Ly ) as a direct factor of End(F).
Using all the o together, we get a morphism of local systems on A2/ Fg4,

EndF) > P Ly@n.

2
aqu4,a‘1 =«

This map is a geometric isomorphism. Indeed End(F) is geometrically
semisimple (by purity), the various Ly ) are pairwise not geometrically
isomorphic, and the number of them is ¢2, the rank of End(F). Being yrf‘rith—

equivariant, this map is an arithmetic isomorphism as well. (]

Denote by W, the one-dimensional F>-vector space
W, = o € Fpula +a? =0).

COROLLARY 20.2 (Pink). On AI/IFq4, the sheaf End(F) has Ggeom =
Gaiith = Wq-
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Proof. Indeed, for
2
7 A At 17,

we have L
Qe = P Ly = End(F). 0
aeW,

COROLLARY 20.3 (Pink). The group G geom, F for F is a finite p-group.

Proof. As noted in Theorem 2.3, F has a geometrically trivial determinant.
Therefore Ggeom, 7 lies in SL(q, Q). Passing to End(F) gives an isomorphism

Ggeom,]—'/(scalars N Ggeom,]—') = Ggeom,End(]—')-

The target group is W,. The group scalars N Ggeom, 7 is a subgroup of 1, the
scalars in the ambient SL(q, Qp). [l

§21. Second supplement: proof of Sawin’s theorem.

THEOREM 21.1 (Sawin). Suppose q is odd. The group G geom for
F=FFy, ¥, 1, g+ 1)
is “the” Heisenberg group of order pq® and exponent p.
Proof. We exploit the fact (cf. Theorem 20.1) that for each « € W, we have
F=FQ Ly

Hence for the q2 fold direct sum of F, which we denote qz]: , we have

¢*F = @ FQRLyw@x) =EF® 7.Qp = . * F.
aeW

We also know that 7* End(F) is trivial, which implies that the action of Ggeom
on 7*F is scalar. In other words, 7*F is g copies of a one-dimensional
representation, thus we have

a*F=qLl
for some lisse, rank one sheaf £ on the “upstairs” A'. Applying 7,, we get
g L = m, ot F = g2 F,
and hence
m L= qF,

(here using Chebotarev, and the fact that F is geometrically and hence
arithmetically irreducible).
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840 N. M. KATZ

Using this, we next show that the Euler characteristic x. (A1 /IF_q4, L) = —q.
Indeed, we have

Xe(A/F s, £) = xe(AF s, m L) = qxe (A /Fu, F),
and
Xe(A/F 4, F) = rank(F) — Swanoo (F) = q — (¢ + 1) = —1.

Therefore L, being lisse of rank one on A, has Swane, (L) = qg+1.

We next show that £ is geometrically of the form L q+1y for some non-
zero constant ¢ € E. The morphism 7 is equivariant for the action of 11441 on
Al given by t +> ¢t. The sheaf F is visibly isomorphic to its pullback by any
¢ € j1g41, hence so is its pullback 7* F = ¢ F, hence also L. The group ptg41
being cyclic, the restriction of L to G, descends through the g+ 1-power map, to
a lisse rank one sheaf £ on G,, which is tame at 0 and whose Swans, (L) = 1.
So geometrically £ is of the form Ly (x)Ly (cx) for some non-zero ¢ € F,. Thus
L, being lisse at 0, is geometrically £, (jq4+1).

We next show that the constant ¢ figuring in Ly (.q+1y lies in F,. For this,
we use the fact that the morphism m is equivariant for the translation action
of W, on Al. We know that F is isomorphic to its additive pullback by any
a € W,. Therefore so is its pullback ¢£, and hence £ is isomorphic to any
additive translate of itself by « € W,,. Thus

Ez//(c(t+a)’1+l _th-H)

is geometrically trivial. Remembering that (x + y)? = (x7 + y0)(x + y), we
readily compute

c(t + )t — et = c(@?t + at? + o)
= c(@it —a 11 + 1)
= (c — M Dalt + (Vait) — (V9a91)9 + calt!.

Thus we have a geometric isomorphism

Ly etayri—ciatty = Ly e—clayasn)-

Taking for o a non-zero element of W, this has Swany,, = 1 unless ¢ = cl/a,
i.e., unless ¢ € .

In order to trivialize F, we must first pull back by 7, in order to trivialize
End(F), and then we must further pull back to trivialize £ (or equivalently to
trivialize w*F). Choose a non-trivial additive character ¥ of IF,, extend it to
[F, by composition with the trace, and write our chosen v as ¥ (ax) for some
a € FF. So Lis Ly, cqra+1y- Thus the finite étale Galois covering of the x-line

which trivializes F is the subscheme of A3 given by the two equations
2
t+17 =x, P — 7z =car?t!,

and the Galois group of this covering is our Ggeom-
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RIGID LOCAL SYSTEMS ON A! WITH FINITE MONODROMY 841
This Galois group consists of pairs
(0 e Wy, A€ E[t] such that A? — A = ca(r + a)4t! — carith),

acting as
t—t+a, > Z4+ A

Let us specify
q=rp"
In any [F,-algebra, we have the telescoping identity
AT — A= (AP — A) + (AP — A)P + (AP — A)P" 4 ... (AP — AP
So in terms of the “mock trace” polynomial

i=n—1

TX):= Y X,

i=0
which is an additive I ,-linear polynomial, we have
Al —A=T(A? —-T(A).

We next observe that for @ € W,, we have

2
(@9t = g9 o4 = —4t!.
Thus
(fthd — i+t = 247!,
(—caa?™4 — caadt! = —2caad™!,
and hence
T(—caa*')2)P — T(—caa®t'/2) = caad™!.
Expanding

ca(t + )1 — cat?™! = caalt + caat? + caa?™!
= caalt — (caadt)? + caad™!
=T (—caalt)? — T(—caalt)
+ T (—caa?*1/2)P — T(—caa’™!)2)
= T(—caa®t/2 — caa?t)?
— T (—caa®™' /2 — caat).

Thus for each element @ € W, the pair

(a, T(—caadt1 /2 — caalt))
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is an element of the Galois group, and the most general element of the Galois
group with first coordinate « is

(a, T(—caadt )2 — caalt) +r),
with r € IF,. We denote this element as
la, r] == (o, T(—caa®™' /2 — caalt) +r).

A straightforward calculation shows that under composition, we have

[B,slola,rl=[a+ B, r+s+T(—ca@!B —aph)].
For a, B € W, one checks that

alp —ap? eF,,

and hence

T(—ca(a?p — ap?)) = Tracep, /r,(—ca(@?B — ap?)).

To show that we have the asserted Heisenberg group, it remains only to check
that the alternating I ,-valued bilinear form on W, given by

(e, B) := Tracer, /v, (—ca(e?B — ap?)),

is a perfect pairing. If we note that a?p € F 2, and that «? 8 — «f is its trace
down to I, then

Trace, /r,(—ca(a?B — ap?)) = Tracquz/]Fp (—caaip).

If we choose a basis e of Wy as I 2-vector space, and write o« = A%e, B = Be,
then our pairing is

Tracquz/]Fp (—caalpB) = Tracquz/]Fp (—caABetth,

As —caedt! is a non-zero element of [F 2, this is a perfect pairing, by non-
degeneracy of the trace. ([l

A. Appendix
by Pham Huu Tiep’

Let g = p/ be a power of a prime p. The unitary group U (3, ¢) is the isometry
group of a three-dimensional F 2-space W endowed with a non-degenerate
Hermitian form (, ). We work with the projective unitary group PU(3, g) =
UQB,q)/Z,for Z =ZUQ@3,q)).

7 The author is partially supported by the NSF grant DMS-1665014.
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It is convenient to choose a basis (e, e2, e3) of the space W with respect to
which the Hermitian form (, ) is

(ei,ej) = 64itj,
001

i.e., has the Gram matrix <(1) (1) 8). Ennola calls this the hyperbolic basis, cf. [5,
bottom of p. 30]. Then the Borel subgroup B of PU(3, g) is the group of matrices

a 0 O

b 1 0

d e 1/a?
with entries a € ]F;z, b,d, e € Fp, satisfying

ael +b =0, ad? +ald 4+ bb? = 0.

The quasisplit torus Tysp) < B is the diagonal subgroup

a 0 O

01 o0

0 0 1/a%

The unipotent radical R, of B is the subgroup a = 1, i.e., the group of matrices

1 0 O
Gy=[x 1 0], xyeFp y+y+xit'=0,
y —x? 1

with the multiplication
WX Y) =@+ X,y +Y —x7X).
It is now easy to check that the subgroup
Z(R,) = [Ry, R\ =1{(0,y) | y € F o,y +y! =0}

is (non-canonically, unless p = 2) isomorphic to the additive group (IF,, +); in
particular, it is an elementary abelian p-group of order g.

The quotient R, /Z(R,) is isomorphic to the additive group (F,2, +) and so
it is elementary abelian of order ¢2. It follows that the Frattini subgroup ®(R,)
(i.e., the intersection of all maximal subgroups of R,) coincides with Z(R,,).

LEMMA A.l. Forany g € R, . Z(Ry), one has
[g’ Ru] = Z(Ru)

Proof. Indeed, any element of Z(R,) is of the form (0, ¢ — ¢?) for some
c € qu. For g = (a, b) with a # 0, the commutator [(a, b), (X, Y)] is readily
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calculated to be (0, aX? — a?X), so we have only to take X = (c¢/a)? and then
choose Y € qu with Tracquz /F, Y) = — NOI‘m]qu /F, (X), a choice which is
possible because Trace]qu JF, 1s surjective. O

THEOREM A.2. Up to isomorphism, the group R, has q* + q — 1 complex
irreducible representations, namely:

(@) q? of degree 1, and
(b) g — lirreducible representations Hy, of degree q, one for each non-trivial
linear character ¥ of Z(Ry,).

Moreover, we have the following information about the representations Hy.

(¢)  The character xy of Hy vanishes on R, ~\"Z(R,) and equals qr on Z(R,,).

(d) The characters {xy}y of these g — 1 irreducible representations Hy are
transitively permuted by Tyspl.

Proof. As mentioned above, [R,, R,] = Z(R,) has index q2 in R,, whence
Irr(R,) contains exactly q2 linear characters. Let H € Irr(R,) be an irreducible
representation H : R, — GL(d,C) with d > 1. The center Z(R,) acts as
scalars, and that action is non-trivial (otherwise H would be a representation
of the abelian group R, /Z(R,)). So there is a non-trivial linear character ¢ of
Z(R,) such that for all r € Z(R,,) and all g € R, we have

H(rg) = H(gt) =¥ () H(g).
In particular,
H@)y=y@)HQ) ie., H|zr,) =dy.

Because i is non-trivial, there exists an element z € Z(R,) with ¥ (z) # 1. For
any g € R, \ Z(Ry,), there exists (by Lemma A.1 applied to g’l) an element
x € R, such that x~'gx = gz. Then

H(x"'gx) = H(gz) = ¥ (2)H (g).
Taking traces, we obtain xg(g) = ¥ (2) xu(g), and so xg(g) = 0. Thus
xg =0 onR, NZ(R,).

The orthogonality relation then gives

=Y xnMP= Y lxuOP=qd,

yERM yeZ(Ru)

andsod = gq.
We have shown that each nonlinear character y of R, has degree g, whence
there must be (¢° — ¢?)/q> = g — 1 of them. The above analysis shows that
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each of them is determined by its central character, which is one of the g — 1
non-trivial characters of Z(R,). Therefore there exists the asserted Hy, for each
non-trivial character v of Z(R,), and these Hy, give all the nonlinear irreducible
representations of R,,.

To prove the last assertion (d), pick an element x € ]F;2 of full order g% — 1.

Then Tysp) contains the element / := diag(x, 1, x™9) of order g* — 1. Since h(0,
bYh= ' = (0,x"17'b) = (0, b /Normg , /g, (x)), we conclude that  acts a cyclic
permutation of length ¢ — 1 on both the non-trivial elements of Z(R,) and on
the set of non-trivial characters of Z(R,,). O
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